156 research outputs found

    Relativistic Approach to Superfluidity in Nuclear Matter

    Get PDF
    Pairing correlations in symmetric nuclear matter are studied within a relativistic mean-field approximation based on a field theory of nucleons coupled to neutral (σ\sigma and ω\omega) and to charged (ϱ\varrho) mesons. The Hartree-Fock and the pairing fields are calculated in a self-consistent way. The energy gap is the result of a strong cancellation between the scalar and vector components of the pairing field. We find that the pair amplitude vanishes beyond a certain value of momentum of the paired nucleons. This fact determines an effective cutoff in the gap equation. The value of this cutoff gives an energy gap in agreement with the estimates of non relativistic calculations.Comment: 21 pages, REVTEX, 8 ps-figures, to appear in Phys.Rev.C. e-mail: [email protected]

    Dirac Sea Effects on Superfluidity in Nuclear Matter

    Full text link
    We study two kinds of Dirac sea effects on the 1S0^1S_0 pairing gap in nuclear matter based on the relativistic Hartree approximation to quantum hadrodynamics and the Gor'kov formalism. We show that the vacuum fluctuation effect on the nucleon effective mass is more important than the direct coupling between the Fermi sea and the Dirac sea due to the pairing interaction. The effects of the high-momentum cutoff are also discussed.Comment: 11 pages, 3 eps figures included, uses REVTeX (with \tightenlines

    Bare vs effective pairing forces. A microscopic finite-range interaction for HFB calculations in coordinate space

    Full text link
    We propose a microscopic effective interaction to treat pairing correlations in the 1S0^{1}S_0 channel. It is introduced by recasting the gap equation written in terms of the bare force into a fully equivalent pairing problem. Within this approach, the proposed interaction reproduces the pairing properties provided by the realistic AV18AV18 force very accurately. Written in the canonical basis of the actual Bogolyubov transformation, the force takes the form of an off-shell in-medium two-body matrix in the superfluid phase multiplied by a BCS occupation number 2ρm2 \rho_{m}. This interaction is finite ranged, non local, total-momentum dependent and density dependent. The factor 2ρm2 \rho_{m} emerging from the recast of the gap equation provides a natural cut-off and makes zero-range approximations of the effective vertex meaningful. Performing such an approximation, the roles of the range and of the density dependence of the interaction can be disentangled. The isoscalar and isovector density-dependences derived ab-initio provide the pairing force with a strong predictive power when extrapolated toward the drip-lines. Although finite ranged and non local, the proposed interaction makes HFB calculations of finite nuclei in coordinate space tractable. Through the two-basis method, its computational cost is of the same order as for a zero-range force.Comment: 43 pages, 13 figures. Published versio

    Interstellar neutral helium in the heliosphere from IBEX observations. III. Mach number of the flow, velocity vector, and temperature from the first six years of measurements

    Full text link
    We analyzed observations of interstellar neutral helium (ISN~He) obtained from the Interstellar Boundary Explorer (IBEX) satellite during its first six years of operation. We used a refined version of the ISN~He simulation model, presented in the companion paper by Sokol_et al. 2015, and a sophisticated data correlation and uncertainty system and parameter fitting method, described in the companion paper by Swaczyna et al 2015. We analyzed the entire data set together and the yearly subsets, and found the temperature and velocity vector of ISN~He in front of the heliosphere. As seen in the previous studies, the allowable parameters are highly correlated and form a four-dimensional tube in the parameter space. The inflow longitudes obtained from the yearly data subsets show a spread of ~6 degree, with the other parameters varying accordingly along the parameter tube, and the minimum chi-square value is larger than expected. We found, however, that the Mach number of the ISN~He flow shows very little scatter and is thus very tightly constrained. It is in excellent agreement with the original analysis of ISN~He observations from IBEX and recent reanalyses of observations from Ulysses. We identify a possible inaccuracy in the Warm Breeze parameters as the likely cause of the scatter in the ISN~He parameters obtained from the yearly subsets, and we suppose that another component may exist in the signal, or a process that is not accounted for in the current physical model of ISN~He in front of the heliosphere. From our analysis, the inflow velocity vector, temperature, and Mach number of the flow are equal to lambda_ISNHe = 255.8 +/- 0.5 degree, beta_ISNHe = 5.16 +/- 0.10 degree, T_ISNHe = 7440 +/- 260 K, v_ISNHe = 25.8 +/- 0.4$ km/s, and M_ISNHe = 5.079 +/- 0.028, with uncertainties strongly correlated along the parameter tube.Comment: Updated reference

    A Relativistic Separable Potential to Describe Pairing in Nuclear Matter

    Get PDF
    Using the Dirac-Hartree-Fock-Bogoliubov approximation to study nuclear pairing, we have found the short-range correlations of the Dirac 1^1S0_0 pairing fields to be essentially identical to those of the two-nucleon virtual state at all values of the baryon density. We make use of this fact to develop a relativistic separable potential that correctly describes the pairing fields.Comment: 17 pages, 4 eps-figure

    Relativistic Hartree-Bogoliubov theory with finite range pairing forces in coordinate space: Neutron halo in light nuclei

    Get PDF
    The Relativistic Hartree Bogoliubov (RHB) model is applied in the self-consistent mean-field approximation to the description of the neutron halo in the mass region above the s-d shell. Pairing correlations and the coupling to particle continuum states are described by finite range two-body forces. Finite element methods are used in the coordinate space discretization of the coupled system of Dirac-Hartree-Bogoliubov integro-differential eigenvalue equations, and Klein-Gordon equations for the meson fields. Calculations are performed for the isotopic chains of Ne and C nuclei. We find evidence for the occurrence of neutron halo in heavier Ne isotopes. The properties of the 1f-2p orbitals near the Fermi level and the neutron pairing interaction play a crucial role in the formation of the halo. Our calculations display no evidence for the neutron halo phenomenon in C isotopes.Comment: 7 pages, Latex, 5 P.S. Figures, To appear in Phys. Rev. Let

    Relativistic Hartree-Bogoliubov description of the deformed ground-state proton emitters

    Get PDF
    Ground-state properties of deformed proton-rich odd-Z nuclei in the region 59≀Z≀6959 \leq Z \leq 69 are described in the framework of Relativistic Hartree Bogoliubov (RHB) theory. One-proton separation energies and ground-state quadrupole deformations that result from fully self-consistent microscopic calculations are compared with available experimental data. The model predicts the location of the proton drip-line, the properties of proton emitters beyond the drip-line, and provides information about the deformed single-particle orbitals occupied by the odd valence proton.Comment: 9 pages, RevTeX, 3 PS figures, submitted Phys. Rev. Letter

    Relativistic Hartree-Bogoliubov description of ground-state properties of Ni and Sn isotopes

    Get PDF
    The Relativistic Hartree Bogoliubov (RHB) theory is applied in the description of ground-state properties of Ni and Sn isotopes. The NL3 parameter set is used for the effective mean-field Lagrangian, and pairing correlations are described by the pairing part of the finite range Gogny interaction D1S. Fully self-consistent RHB solutions are calculated for the Ni (28≀N≀5028\leq N\leq 50) and Sn (50≀N≀8250\leq N\leq 82) isotopes. Binding energies, neutron separation energies, and proton and neutron rmsrms radii are compared with experimental data. The model predicts a reduction of the spin-orbit potential with the increase of the number of neutrons. The resulting energy splittings between spin-orbit partners are discussed, as well as pairing properties calculated with the finite range effective interaction in the pppp channel.Comment: 11 pages, RevTex, 12 p.s figures, submitted to Phys. Rev.
    • 

    corecore