19 research outputs found
Characteristics of tropical–extratropical cloud bands over tropical and subtropical South America simulated by BAM-1.2 and HadGEM3-GC3.1
Tropical–extratropical cloud bands are common in South America (SAm), contributing significantly to the total rainy season precipitation. Thus, it is fundamental that climate and weather forecast models correctly represent them and their associated dynamic aspects. Adopting an event-based framework, we evaluate the performance of two global models in simulating the observed cloud bands over SAm: the Brazilian Global Atmospheric Model version 1.2 (BAM-1.2) and the Hadley Centre Global Environment Model in the Global Coupled configuration 3.1 (HadGEM3-GC3.1). Both models reproduce the main characteristics of cloud bands and the dynamical aspects leading to their development and persistence. Nonetheless, the biases in precipitation during simulated cloud bands contribute more than 50% of the bias in total precipitation in some regions. BAM-1.2 simulates fewer but more persistent cloud bands than observed; HadGEM3-GC3.1 simulates weaker cloud band activity during early summer and more persistent events after January than observed. In all models, the biases in cloud band events arise from the interaction between biases in the basic state and the synoptic-scale regional circulation. In the basic state, stronger upper level westerlies over the midlatitude South Pacific support the propagation of longer and slower Rossby waves towards subtropical SAm, increasing the duration of the cloud band events. This bias interacts with negative biases in the upper level westerlies over subtropical SAm, increasing the wind shear, hindering the propagation of synoptic-scale Rossby waves into lower latitudes, and resulting in biases in the cloud band location, intensity, and seasonality. The application in this study of an event-based framework robust to differences in model resolution and complexity enables the identification of small but critical biases in circulation. These biases are linked to synoptic-scale rainfall system biases and help to explain the season total rainfall model biases
Recommended from our members
Subseasonal prediction performance for austral summer South American rainfall
Skilful and reliable predictions of week-to-week rainfall variations in South America, two to three weeks ahead, are essential to protect lives, livelihoods and ecosystems. We evaluate forecast performance for weekly rainfall in extended austral summer (November-March) in four contemporary subseasonal systems, including a new Brazilian model, at 1-5 week leads for 1999-2010. We measure performance by the correlation coefficient (in time) between predicted and observed rainfall; we measure skill by the Brier Skill Score for rainfall terciles against a climatological reference forecast. We assess unconditional performance (i.e., regardless of initial condition) and conditional performance based on the initial phase of the Madden-Julian Oscillation (MJO) and the El Nino--Southern Oscillation (ENSO). All models display substantial mean rainfall biases, including dry biases in Amazonia and wet biases near the Andes, which are established by Week 1 and vary little thereafter. Unconditional performance extends to Week 2 in all regions except for Amazonia and the Andes, but to Week 3 only over northern, northeastern and southeastern South America. Skill for upper- and lower-tercile rainfall extends only to Week 1. Conditional performance is not systematically or significantly higher than unconditional performance; ENSO and MJO events provide limited "windows of opportunity" for improved S2S predictions that are region- and model-dependent. Conditional performance may be degraded by errors in predicted ENSO and MJO teleconnections to regional rainfall, even at short lead times
Recommended from our members
Configuration and hindcast quality assessment of a brazilian global sub‐seasonal prediction system
This paper presents the Center for Weather Forecast and Climate Studies (CPTEC) developments for configuring a global sub-seasonal prediction system and assessing its ability in producing retrospective predictions (hindcasts) for meteorological conditions of the following 4 weeks. Six Brazilian Global Atmospheric Model version 1.2 (BAM-1.2) configurations were tested in terms of vertical resolution, deep convection and boundary layer parameterizations, as well as soil moisture initialization. The aim was to identify the configuration with best performance when predicting weekly accumulate precipitation, weekly mean 2-meter temperature (T2M) and the Madden and Julian Oscillation (MJO) daily evolution. Hindcasts assessment was performed for 12 extended austral summers (November to March - 1999/2000 to 2010/2011) with two start dates for each month for the six configurations and two ensemble approaches. The first approach, referred to as Multiple Configurations Ensemble (MCEN), was formed of one ensemble member from each of the six configurations. The second, referred to as Initial Condition Ensemble (ICEN), was composed of six ensemble members produced with the chosen configuration as the best using an Empirical Orthogonal Function (EOF) perturbation methodology. The chosen configuration presented high correlation and low root mean squared error (RMSE) for precipitation and T2M anomaly predictions at the first week and these indices degraded as lead time increased, maintaining moderate performance up to week 4 over the tropical Pacific and northern South America. For MJO predictions, this configuration crossed the 0.5 bivariate correlation threshold in 18 days. The ensemble approaches improved the correlation and RMSE of precipitation and T2M anomalies. ICEN improved precipitation and T2M predictions performance over eastern South America at week 3 and over northern South America at week 4. Improvements were also noticed for MJO predictions. The time to cross the above mentioned threshold increased to 21 days for MCEN and to 20 days for ICEN
Recommended from our members
Evaluation of climate simulations produced with the Brazilian Global Atmospheric Model version 1.2
This paper presents an evaluation of climate simulations produced by the Brazilian Global Atmospheric Model version 1.2 (BAM-1.2) of the Center for Weather Forecast and Climate Studies (CPTEC). The model was run over the 1975-2017 period at two spatial resolutions, corresponding to ~180 and ~100 km, both with 42 vertical levels, following most of the Atmospheric Model Intercomparison Project (AMIP) protocol. In this protocol, observed sea surface temperatures (SSTs) are used as boundary conditions for the atmospheric model. Four ensemble members were run for each of the two resolutions. A series of diagnostics was computed for assessing the model's ability to represent the top of the atmosphere (TOA) radiation, atmospheric temperature, circulation and precipitation climatological features. The representation of precipitation interannual variability, El Niño-Southern Oscillation (ENSO) precipitation teleconnections, the Madden and Julian Oscillation (MJO) and daily precipitation characteristics was also assessed. The model at both resolutions reproduced many observed temperature, atmospheric circulation and precipitation climatological features, despite several identified biases. The model atmosphere was found to be more transparent than the observations, leading to misrepresentation of cloud-radiation interactions. The net cloud radiative forcing, which produces a cooling effect on the global mean climate at the TOA, was well represented by the model. This was found to be due to the compensation between both weaker longwave cloud radiative forcing (LWCRF) and shortwave cloud radiative forcing (SWCRF) in the model compared to the observations. The model capability to represent inter-annual precipitation variability at both resolutions was found to be linked to the adequate representation of ENSO teleconnections. However, the model produced weaker than observed convective activity associated with the MJO. Light daily precipitation over the southeast of South America and other climatologically similar regions was diagnosed to be overestimated, and heavy daily precipitation underestimated by the model. Increasing spatial resolution helped to slightly reduce some of the diagnosed biases. The performed evaluation identified model aspects that need to be improved. These include the representation of polar continental surface and sea ice albedo, stratospheric ozone, low marine clouds, and daily precipitation features, which were found to be larger and last longer than the observed features
Recommended from our members
A perspective for advancing climate prediction services in Brazil
The Climate Science for Service Partnership Brazil (CSSP-Brazil) project provides Brazil and UK partners the opportunity to address important challenges faced by the climate modeling community, including the need to develop subseasonal and seasonal prediction and climate projection services. This paper provides an overview of the climate modeling and prediction research conducted through CSSP-Brazil within the context of a framework to advance climate prediction services in Brazil that includes a research-to-services (R2S) and a services-to-research (S2R) feedback pathway. The paper also highlights plans to advance scientific understanding and capability to produce beneficial climate knowledge and new products to improve climate prediction services to support decisions in various industries in Brazil. Policy-relevant outcomes from climate modeling and prediction exercises illustrated in this paper include supporting stakeholders with climate information provided from weeks to months ahead for (a) improving water management strategies for human consumption, navigation, and agricultural and electricity production; (b) defining crop variety and calendars for food production; and (c) diversifying energy production with alternatives to hydropower
Co-expression network of neural-differentiation genes shows specific pattern in schizophrenia
Background: Schizophrenia is a neurodevelopmental disorder with genetic and environmental factors contributing to its pathogenesis, although the mechanism is unknown due to the difficulties in accessing diseased tissue during human neurodevelopment. The aim of this study was to find neuronal differentiation genes disrupted in schizophrenia and to evaluate those genes in post-mortem brain tissues from schizophrenia cases and controls.
Methods: We analyzed differentially expressed genes (DEG), copy number variation (CNV) and differential methylation in human induced pluripotent stem cells (hiPSC) derived from fibroblasts from one control and one schizophrenia patient and further differentiated into neuron (NPC). Expression of the DEG were analyzed with microarrays of post-mortem brain tissue (frontal cortex) cohort of 29 schizophrenia cases and 30 controls. A Weighted Gene Co-expression Network Analysis (WGCNA) using the DEG was used to detect clusters of co-expressed genes that werenon-conserved between adult cases and controls brain samples.
Results: We identified methylation alterations potentially involved with neuronal differentiation in schizophrenia, which displayed an over-representation of genes related to chromatin remodeling complex (adjP = 0.04). We found 228 DEG associated with neuronal differentiation. These genes were involved with metabolic processes, signal transduction, nervous system development, regulation of neurogenesis and neuronal differentiation. Between adult brain samples from cases and controls there were 233 DEG, with only four genes overlapping with the 228 DEG, probably because we compared single cell to tissue bulks and more importantly, the cells were at different stages of development. The comparison of the co-expressed network of the 228 genes in adult brain samples between cases and controls revealed a less conserved module enriched for genes associated with oxidative stress and negative regulation of cell differentiation.
Conclusion: This study supports the relevance of using cellular approaches to dissect molecular aspects of neurogenesis with impact in the schizophrenic brain. We showed that, although generated by different approaches, both sets of DEG associated to schizophrenia were involved with neocortical development. The results add to the hypothesis that critical metabolic changes may be occurring during early neurodevelopment influencing faulty development of the brain and potentially contributing to further vulnerability to the illness.We thank the patients, doctors and nurses involved with sample collection and the Stanley Medical Research Institute. This research was supported by either Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq #17/2008) and Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ). MM (CNPq 304429/2014-7), ACT (FAPESP 2014/00041-1), LL (CAPES 10682/13-9) HV (CAPES) and BP (PPSUS 137270) were supported by their fellowshipsinfo:eu-repo/semantics/publishedVersio
Recommended from our members
Subseasonal prediction performance for South American land–atmosphere coupling in extended austral summer
Land–atmosphere feedbacks, through water and energy exchanges, provide subseasonal-to-seasonal predictability of the hydrological cycle. We analyse subseasonal land–atmosphere coupling over South America (SA) during extended austral summer for the soil moisture-to-precipitation and soil moisture-to-air temperature feedback pathways. We evaluate subseasonal hindcasts from global forecasting systems from the UK Met Office, the National Centers for Environmental Prediction (NCEP), the European Centre for Medium Range Weather Forecasts and the Center for Weather Forecast and Climate Studies (CPTEC), for the common period of 1999–2010, against two reanalyses. Biases in land–atmosphere states are established in the first week of hindcasts and increase with lead time. By Week 5, all the models only demonstrate good performance over northern, northeastern and southeastern SA for soil moisture and evapotranspiration and over tropical and subtropical SA for temperature. The hindcasts show stronger coupling at longer lead–lag between variables than reanalyses. Our results highlight possible deficiencies in feedbacks between soil moisture and precipitation in CPTEC and NCEP forecasts over the Amazon due to initial dry soil moisture biases, and in feedbacks between soil moisture and temperature for all four investigated models over southeastern SA due to erroneous representations of evapotranspiration
Observed and simulated local climate responses to tropical deforestation
Tropical deforestation has local and regional effects on climate, but the sign and magnitude of these effects are still poorly constrained. Here we used satellite observations to evaluate the local land surface temperature and precipitation response to tropical deforestation in historical simulations from 24 CMIP6 models. We found tropical forest loss leads to an observed local dry season warming and reduced wet and dry season precipitation across the range of scales (0.25°-2°) analysed. At the largest scale analysed (2°), we observed a warming of 0.018 ± 0.001 °C per percentage point of forest loss (°C % ^−1 ), broadly captured in the multi-model mean response of 0.017 ± 0.005 °C % ^−1 . The multi-model mean correctly simulates reduced precipitation due to forest loss in the dry season but simulates increased precipitation due to forest loss in the wet season, opposite to the observed response. We found that the simulated dry season surface temperature and precipitation changes due to forest loss depend on the simulated surface albedo change, with less warming and less drying in models with greater increases in surface albedo due to forest loss. Increased recognition of the local and regional climate benefits of tropical forests is needed to support sustainable land use policy
TIMPZ: an exquisite building block for metal/hydrogen coordination polymers
The novel polynitrogenated ligand tetra-[4(5)-imidazoyl]pyrazine (TIMPZ, 1) and its pincer complex of Fe-II are described. This ligand has an outstanding ability to aggregate in 1D-superstructures by means of hydrogen bonding or metal chelation. TIMPZ shows an unprecedented conformational control over the supramolecular assembly. Metal or hydrogen coordination switches the conformation of peripheral rings driving the assembly preferences. For [Fe-n(TIMPZ)(n+1)](2n+) complexes, UV/Vis spectroscopy shows a bathochromic shift of the main visible absorption band with higher n values. TIMPZ also has hydrogen-bond triggered excited-state intramolecular proton transfer (ESIPT) fluorescence, which is completely inhibited by chelation with transition metals20191722912294FAPESP – Fundação de Amparo à Pesquisa Do Estado De São Paulo14/25770‐