520 research outputs found

    Ginzburg-Landau Equations for Coexistent States of Superconductivity and Antiferromagnetism in t-J model

    Full text link
    Ginzburg-Landau (GL) equations for the coexistent state of superconductivity and antiferromagnetism are derived microscopically from the t-J model with extended transfer integrals. GL equations and the GL free energy, which are obtained based on the slave-boson mean-field approximation, reflect the electronic structure of the microscopic model, especially the evolution of the Fermi surface due to the change of the doping rate. Thus they are suitable for studying the material dependence of the coexistent states in high-TCT_C cuprate superconductors.Comment: 12 page

    Effect of Band Structure on the Symmetry of Superconducting States

    Full text link
    Effects of the band structure on the symmetry of superconducting (SC) states are studied. For a square lattice system with a nearest-neighbor attractive interaction, SC states with various symmetries are found by changing the band structure, or, the shape of the Fermi surface. The spin-triplet ((px+ipy)(p_x + ip_y)-wave) and spin-singlet (dd- or s-wave) SC states, and states with their coexistence (d+ipyd + ip_y, s+ipys + ip_y) can be stabilized within the same type of interaction. The stability of interlayer-pairing states with line nodes is also examined, and its relation to the SC state of Sr2_2RuO4_4 is discussed.Comment: 4 pages, 4 figure

    Microscopic derivation of Ginzburg-Landau equations for coexistent states of superconductivity and magnetism

    Full text link
    Ginzburg-Landau (GL) equations for the coexistent states of superconductivity and magnetism are derived microscopically from the extended Hubbard model with on-site repulsive and nearest-neighbor attractive interactions. In the derived GL free energy a cubic term that couples the spin-singlet and spin-triplet components of superconducting order parameters (SCOP) with magnetization exists. This term gives rise to a spin-triplet SCOP near the interface between a spin-singlet superconductor and a ferromagnet, consistent with previous theoretical studies based on the Bogoliubov de Gennes method and the quasiclassical Green's function theory. In coexistent states of singlet superconductivity and antiferromagnetism it leads to the occurrence of pi-triplet SCOPs.Comment: 18 page

    Geometrically Frustrated Crystals: Elastic Theory and Dislocations

    Full text link
    Elastic theory of ring-(or cylinder-)shaped crystals is constructed and the generation of edge dislocations due to geometrical frustration caused by the bending is studied. The analogy to superconducting (or superfluid) vortex state is pointed out and the phase diagram of the ring-crystal, which depends on radius and thickness, is discussed.Comment: 4 pages, 3 figure

    Time-reversal symmetry breaking surface states of d-wave superconductors induced by an additional order parameter with negative T_c

    Get PDF
    Surface states of d_{x^2-y^2}-wave superconductors are studied using the Ginzburg-Landau (GL) theory. For a [110] surface it has been known that the time-reversal symmetry (T) breaking surface state, (d+-is)-wave state, can occur if the bare transition temperature of the s-wave order parameter (OP) is positive. We show that even if this bare T_c is negative, it is possible to break T because the coupling to the spontaneously generated magnetic field may induce the s-wave OP. The T-breaking state is favored when the GL parameter (kappa) is small.Comment: 5 pages, 7 figure

    On the Bloch Theorem Concerning Spontaneous Electric Current

    Full text link
    We study the Bloch theorem which states absence of the spontaneous current in interacting electron systems. This theorem is shown to be still applicable to the system with the magnetic field induced by the electric current. Application to the spontaneous surface current is also examined in detail. Our result excludes the possibility of the recently proposed dd-wave superconductivity having the surface flow and finite total current.Comment: 12 pages, LaTeX, 3 Postscript figure

    Dynamical Induction of s-wave Component in d-wave Superconductor Driven by Thermal Fluctuations

    Full text link
    We investigated the mutual induction effects between the d-wave and the s-wave components of order parameters due to superconducting fluctuation above the critical temperatures and calculated its contributions to paraconductivity and excess Hall conductivity based on the two-component stochastic TDGL equation. It is shown that the coupling of two components increases paraconductivity while it decreases excess Hall conductivity compared to the cases when each component fluctuates independently. We also found the singular behavior in the paraconductivity and the excess Hall conductivity dependence on the coupling parameter which is consistent with the natural restriction among the coefficients of gradient terms.Comment: 10 pages, 4 figures included, submitted to J.Phys.Soc.Jp

    Second order quantum renormalisation group of XXZ chain with next nearest neighbour interactions

    Full text link
    We have extended the application of quantum renormalisation group (QRG) to the anisotropic Heisenberg model with next-nearest neighbour (n-n-n) interaction. The second order correction has to be taken into account to get a self similar renormalized Hamiltonian in the presence of n-n-n-interaction. We have obtained the phase diagram of this model which consists of three different phases, i.e, spin-fluid, dimerised and Ne'el types which merge at the tri-critical point. The anisotropy of the n-n-n-term changes the phase diagram significantly. It has a dominant role in the Ne'el-dimer phase boundary. The staggered magnetisation as an order parameter defines the border between fluid-Ne'el and Ne'el-dimer phases. The improvement of the second order RG corrections on the ground state energy of the Heisenberg model is presented. Moreover, the application of second order QRG on the spin lattice model has been discussed generally. Our scheme shows that higher order corrections lead to an effective Hamiltonian with infinite range of interactions.Comment: 10 pages, 4 figures and 1 tabl

    Precision measurement of vector and tensor analyzing powers in elastic deuteron-proton scattering

    Get PDF
    High precision vector and tensor analyzing powers of elastic deuteron-proton d+p scattering have been measured at intermediate energies to investigate effects of three-nucleon forces (3NF). Angular distribution in the range of 70-120 degree in the center-of mass frame for incident-deuteron energies of 130 and 180 MeV were obtained using the RIKEN facility. The beam polarization was unambiguously determined by measuring the 12C(d,alpha)10B(2+) reaction at 0 degree. Results of the measurements are compared with state-of-the-art three-nucleon calculations. The present modeling of nucleon-nucleon forces and its extension to the three-nucleon system is not sufficient to describe the high precision data consistently and requires, therefore, further investigation

    c-axis Josephson Tunnelling in Twinned and Untwinned YBCO-Pb Junctions

    Full text link
    Within a microscopic two band model of planes and chains with a pairing potential in the planes and off diagonal pairing between planes and chains we find that the chains make the largest contribution to the Josephson tunnelling current and that through them the d-wave part of the gap contributes to the current. This is contrary to the usual assumption that for a d-wave tetragonal superconductor the c-axis Josephson current for incoherent tunnelling into an s-wave superconductor is zero while that of a d-wave orthorhombic superconductor with a small s-wave component to its gap it is small but non-zero. Nevertheless it has been argued that the effect of twins in YBCO would lead to cancellation between pairs of twins and so the observation of a current in c-axis YBCO-Pb experiments is evidence against a d-wave type order parameter. We argue that both theory and experiment give evidence that the two twin orientations are not necessarily equally abundant and that the ratio of tunnelling currents in twinned and untwinned materials should be related to the relative abundance of the two twin orientations.Comment: 6 pages, RevTeX 3.0, 15 PostScript figur
    • …
    corecore