35 research outputs found

    EGFR is not a major driver for osteosarcoma cell growth in vitro but contributes to starvation and chemotherapy resistance

    Get PDF
    Background Enhanced signalling via the epidermal growth factor receptor (EGFR) is a hallmark of multiple human carcinomas. However, in recent years data have accumulated that EGFR might also be hyperactivated in human sarcomas. Aim of this study was to investigate the influence of EGFR inhibition on cell viability and its interaction with chemotherapy response in osteosarcoma cell lines. Methods We have investigated a panel of human osteosarcoma cell lines regarding EGFR expression and downstream signalling. To test its potential applicability as therapeutic target, inhibition of EGFR by gefitinib was combined with osteosarcoma chemotherapeutics and cell viability, migration, and cell death assays were performed. Results Osteosarcoma cells expressed distinctly differing levels of functional EGFR reaching in some cases high amounts. Functionality of EGFR in osteosarcoma cells was proven by EGF-mediated activation of both MAPK and PI3K/AKT pathway (determined by phosphorylation of ERK1/2, AKT, S6, and GSK3). The EGFR-specific inhibitor gefitinib blocked EGF-mediated downstream signal activation. At standard in vitro culture conditions, clinically achievable gefitinib doses demonstrated only limited cytotoxic activity, however, significantly reduced long-term colony formation and cell migration. In contrast, under serum-starvation conditions active gefitinib doses were distinctly reduced while EGF promoted starvation survival. Importantly, gefitinib significantly supported the anti-osteosarcoma activities of doxorubicin and methotrexate regarding cell survival and migratory potential. Conclusion Our data suggest that EGFR is not a major driver for osteosarcoma cell growth but contributes to starvation- and chemotherapy-induced stress survival. Consequently, combination approaches including EGFR inhibitors should be evaluated for treatment of high-grade osteosarcoma patients.(VLID)486733

    Galectin-3 Induces a Pro-degradative/inflammatory Gene Signature in Human Chondrocytes, Teaming Up with Galectin-1 in Osteoarthritis Pathogenesis

    Get PDF
    Inflammatory chemo-and cytokines and matrix-degrading proteases underlie the progression of osteoarthritis (OA). Aiming to define upstream regulators for these disease markers, we pursued initial evidence for an upregulation of members of the adhesion/growth-regulatory galectin family. Immunohistochemical localization of galectin-3 (Gal-3) in sections of human cartilage with increasing levels of degeneration revealed a linear correlation reaching a chondrocyte positivity of 60%. Presence in situ was cytoplasmic, the lectin was secreted from OA chondrocytes in culture and binding of Gal-3 yielded lactose-inhibitable surface staining. Exposure of cells to the lectin led to enhanced gene expression and secretion of functional disease markers. Genome-wide transcriptomic analysis broadened this result to reveal a pro-degradative/inflammatory gene signature under the control of NF-kappa B. Fittingly, targeting this route of activation by inhibitors impaired the unfavourable response to Gal-3 binding, as also seen by shortening the lectin's collagen-like repeat region. Gal-3's activation profile overlaps with that of homodimeric galectin-1 (Gal-1) and also has distinctive (supplementing) features. Tested at subsaturating concentrations in a mixture, we found cooperation between the two galectins, apparently able to team up to promote OA pathogenesis. In summary, our results suggest that a network of endogenous lectins is relevant for initiating this process cascade

    Vascular Morphogenesis in the Context of Inflammation: Self-Organization in a Fibrin-Based 3D Culture System

    Get PDF
    Introduction: New vessel formation requires a continuous and tightly regulated interplay between endothelial cells with cells of the perivascular microenvironment supported by mechanic-physical and chemical cues from the extracellular matrix.Aim: Here we investigated the potential of small fragments of synovial tissue to form de novo vascular structures in the context of inflammation within three dimensional (3D) fibrin-based matrices in vitro, and assessed the contribution of mesenchymal stromal cell (MSC)-immune cell cross-talk to neovascularization considering paracrine signals in a fibrin-based co-culture model.Material and Methods: Synovial tissue fragments from patients with rheumatoid arthritis (RA) and inflammatory osteoarthritis (OA) were cultivated within 3D fibrin matrices for up to 4 weeks. Cellular and structural re-arrangement of the initially acellular matrix were documented by phase contrast microscopy and characterized by confocal laser-scanning microscopy of topographically intact 3D cultures and by immunohistochemistry. MSC-peripheral blood mononuclear cell (PBMC) co-cultures in the 3D fibrin system specifically addressed the influence of perivascular cell interactions to neo-vessel formation in a pro-inflammatory microenvironment. Cytokine levels in the supernatants of cultured explant tissues and co-cultures were evaluated by the Bio-Plex cytokine assay and ELISA.Results: Vascular outgrowth from the embedded tissue into the fibrin matrix was preceded by leukocyte egress from the tissue fragments. Neo-vessels originating from both the embedded sample and from clusters locally formed by emigrated mononuclear cells were consistently associated with CD45(+) leukocytes. MSC and PBMC in co-culture formed vasculogenic clusters. Clusters and cells with endothelial phenotype emerging from them, were surrounded by a collagen IV scaffold. No vascular structures were observed in control 3D monocultures of PBMC or MSC. Paracrine signals released by cultured OA tissue fragments corresponded with elevated levels of granulocyte-colony stimulating factor, vascular endothelial growth factor and interleukin-6 secreted by MSC-PBMC co-cultures.Conclusion: Our results show that synovial tissue fragments with immune cell infiltrates have the potential to form new vessels in initially avascular 3D fibrin-based matrices. Cross-talk and cluster formation of MSC with immune cells within the 3D fibrin environment through self-organization and secretion of pro-angiogenic paracrine factors can support neo-vessel growth

    Perioperative multimodale Schmerztherapie bei HĂĽft- und Knie Total Endoprothesen Implantation

    No full text
    Die Implantation einer Hüft- oder Knie Total Endoprothese zählt zu den schmerzhaftesten Eingriffen in der orthopädischen Chirurgie. Obwohl in den letzten Jahren einige Fortschritte in der perioperativen Schmerztherpie erzielt werden konnten ist für viele Patienten der endoprothetische Gelenkersatz nach wie vor mit starker Schmerzerfahrung verbunden. Der unmittelbar postoperative inadäquat therapierte Schmerz bedeutet nicht nur eine sehr unangenehme Erfahrung für den Betroffenen sondern hat auch negative Konsequenzen für das funktionelle Endergebnis. Viele Studien weisen auch darauf hin, dass postoperativ empfundener Schmerz mit einer verzögerten Rehabilitation assoziiert ist und zu längeren Spitalsaufenthalten und vermehrten Kosten für das Gesundheitssystem führt. Der endoprothetische Ersatz von Hüft- und Kniegelenk zählt zu den erfolgreichsten Operationen überhaupt. Obwohl die Mehrheit der Patienten mit dem Ergebnis der Operation sehr zufrieden ist, gibt es vor allem beim Kniegelenkersatz eine Gruppe von Patienten die wenig bis gar nicht zufrieden sind. Die Hauptursache für das nicht zufriedenstellende Ergebnis bei diesen Patienten sind persistierende Schmerzen. Diese treten auch bei optimalem chirurgischem Verlauf und ohne offensichtliche Ursache auf. In den letzten Jahren mehren sich jedoch die Hinweise, dass periphere und zentrale Sensibilisierungsmechanismen dafür verantwortlich sein könnten. Es ist daher das Ziel neue multimodale Therapiekonzepte zu entwickeln, die an verschiedenen Wirkorten und über verschieden Wirkmechanismen die Entstehung chronischer Schmerzen verhindern können. In den letzten Jahren wurde ein wesentlicher Fortschritt im Bereich des endoprothetischen Hüft- und Kniegelenkersatzes durch die Implementierung neuer gewebeschonender, sogenannter „minimal invasiver“, Verfahren erzielt. Zahlreiche Studien haben allerdings gezeigt, dass ein Großteil der dadurch erreichten Verbesserungen vor allem durch eine gleichzeitige Optimierung der Schmerztherapie unter Verwendung multimodaler Konzepte gelungen ist. Eine multimodale perioperative Schmerztherapie bedarf der Zusammenarbeit aller behandelnden Berufsgruppen. Ziel dieser Masterthese war es die theoretischen Grundlagen der verschiedenen derzeit beschriebenen multimodalen Therapieprotokolle zu erarbeiten. Daraus resultiert ein multimodales Therapiekonzept für Hüft- und Knie Totalendoprothesen Implantationen an der Universitätsklinik für Orthopädie am Allgemeinen Krankenhaus, Wien.vorgelegt von: Bernd KubistaMedizinische Universität Wien, Masterarb., 201

    Total Hip Arthroplasty Using Imageless Computer-Assisted Navigation—2-Year Follow-Up of a Prospective Randomized Study

    No full text
    The purpose of this study is to compare computer-assisted to manual implantation-techniques in total hip arthroplasty (THA) and to find out if the computer-assisted surgery is able to improve the clinical and functional results and reduce the dislocation rate in short-terms after THA. We performed a concise minimum 2-year follow-up of the patient cohort of a prospective randomized study published in 2014 and evaluated if the higher implantation accuracy in the navigated group can be seen as an important determinant of success in total hip arthroplasty. Although a significant difference was found in mean postoperative acetabular component anteversion and in the outliers regarding inclination and anteversion (p < 0.05) between the computer-assisted and the manual-placed group, we could not find significant differences regarding clinical outcome or revision rates at 2-years follow-up. The implantation accuracy in the navigated group can be regarded as an important determinant of success in THA, although no significant differences in clinical outcome could be detected at short-term follow-up. Therefore, further long-term follow-up of our patient group is needed

    Knee Surgery, Sports Traumatology, Arthroscopy / Modern cemented total knee arthroplasty design shows a higher incidence of radiolucent lines compared to its predecessor

    No full text
    Purpose To prevent early failure it is necessary to evaluate modern TKA system for possible shortcomings during implantation. The aim of this study was to evaluate the radiographic outcome and short-term survival of a modern cemented primary TKA system compared to its predecessor. Methods The authors reviewed 529 primary cemented TKAs [276 Attune (ATT) and 253 PFC Sigma (PFC)], which were implanted between 2014 and 2017 concerning the radiographic outcome and short-term survival. Radiographs were taken before discharge, 6 weeks, 6 months and 12 months postoperatively. Radiographic analysis was performed by two independent assessors using the Modern Knee Society Radiographic Evaluation System. Results The incidence of radiolucent lines was significantly higher in the ATT group compared with the PFC group 12 months postoperatively (35.1%; n=97 TKAs vs. 7.5%; n=19 TKAs; p<0.001). Survival analysis could not show any differences in revision-free survival or revision rate. Conclusion The modern primary TKA system shows an increased number of radiolucent lines, especially on the tibial component in this short-term analysis and may mostly be due to technique-related issues. Patients with those radiolucent lines even though they show no clinical evidence for loosening should be closely monitored at regular intervals. These findings are of vital clinical importance because surgeons should be aware of particular challenges in preparation and cementing technique once they are using this TKA-system. Level of evidence Retrospective cohort study, Level III.(VLID)365982

    Early Results of a New Rotating Hinge Knee Implant

    No full text
    Background. Indication for rotating hinge (RH) total knee arthroplasty (TKA) includes primary and revision cases, with contradictory results. The aim of this study was to report prospective early results of a new modular rotating hinge TKA (EnduRo). For this implant several new design features and a new bearing material (carbon-fiber reinforced poly-ether-ether-ketone) have been developed. Furthermore, we tried to establish a new classification of failure modes for revision TKA. Methods. 152 EnduRo rotating-hinge prostheses were implanted in two centers. In 90 patients a primary implantation has been performed and 62 patients were revision cases. Knee Society Score (KSS), Western Ontario and McMaster Osteoarthritis Index (WOMAC), Oxford Knee Score (OKS), and Range of motion (ROM) were assessed before surgery, 3 months postoperatively, 12 months postoperatively, and annually thereafter. We defined 3 types of complications: Type 1, infection; type 2, periprosthetic complications; type 3, implant failures. Results. KSS, WOMAC, OKS, and ROM revealed significant improvements between the preoperative and the follow-up investigations. There were 14 complications (9.2%) leading to revision surgery, predominantly type 2. Conclusion. Our study shows excellent clinical results of the EnduRo TKA. Furthermore, no premature material failure or unusual biological response to the new bearing material could be detected

    A comparative study of intraoperative frozen section and alpha defensin lateral flow test in the diagnosis of periprosthetic joint infection

    No full text
    Background and purpose — For decision-making (aseptic vs. septic), surgeons rely on intraoperatively available tests when a periprosthetic joint infection (PJI) cannot be confirmed or excluded preoperatively. We compared and evaluated the intraoperative performances of the frozen section and the alpha defensin lateral flow test in the diagnosis of PJI. Patients and methods — In this prospective study, consecutive patients with indicated revision surgery after arthroplasty were included. Patients were classified as having PJI using the MusculoSkeletal Infection criteria. The presence of alpha defensin was determined using the lateral flow test intraoperatively. During revision surgery, tissue samples were harvested for frozen and permanent section. Analysis of diagnostic accuracy was based on receiver-operating characteristics. Results — 101 patients (53 hips, 48 knees) were eligible for inclusion. Postoperatively, 29/101 patients were diagnosed with PJI, of which 8/29 cases were definitely classified as septic preoperatively. Of the remainder 21 septic cases, the intraoperative alpha defensin test and frozen section were positive in 13 and 17 patients, respectively. Sensitivities of the alpha defensin test and frozen section were 69% and 86%, respectively. The area under the curves of both tests showed a statistically significant difference (p = 0.006). Interpretation — The frozen section showed a significantly higher performance compared with the alpha defensin test and a near perfect concordance with the definitive histology, and therefore remains an appropriate intraoperative screening test in diagnosing PJI. Although the sensitivity of the alpha defensin test was lower compared with that of frozen section, this test is highly specific for confirming the diagnosis of PJI
    corecore