53 research outputs found

    The Trichoderma atroviride seb1 (stress response element binding) gene encodes an AGGGG-binding protein which is involved in the response to high osmolarity stress

    No full text
    The chitinase genes of Trichoderma spp. (ech42, chit33, nag1) contain one or more copies of a pentanucleotide element (5′-AGGGG-3′) in their 5′-noncoding regions. In Saccharomyces cerevisiae, this motif is recognized and bound by the stress response regulator proteins Msn2p/Msn4p. To test whether this motif in the chitinase promoters is bound by a Trichoderma Msn2/4p homolog, we have cloned a gene (seb1) from T. atroviride which encodes a C2H2 zinc-finger protein that is 62 (64)% identical to S. cerevisiae Msn2p (Msn4p) in the zinc-finger region, and almost identical to the G-box binding protein from Haematonectria haematococca and to polypeptides encoded by uncharacterized ORFs from Neurospora crassa and Aspergillus nidulans. Its zinc-finger domain specifically recognizes the AGGGG sequence of the ech42 and nag1 promoter in band-shift assays. However, a cDNA clone of seb1, when overexpressed in S. cerevisiae, was unable to complement a Δmsn2/4 mutant of S. cerevisiae. Levels of seb1 mRNA increased under conditions of osmotic stress (sorbitol, NaCl) but not under other stress conditions (cadmium sulfate, pH, membrane perturbance). A T. atroviride Δseb1 strain, produced by transformation with a seb1 copy disrupted by insertion of the A. nidulans amdS gene, showed strongly reduced growth on solid medium, but grew normally in liquid medium. In liquid medium, growth of the disruption strain was significantly more inhibited by the presence of 1 M sorbitol and 1 M NaCl than was that of the wild-type strain. Despite the presence of AGGGG elements in the promoter of the chitinase gene nag1, no differences in its expression were found between the parent and the disruption strain. EMSA analyses with cell-free extracts obtained from the seb1 disruption strain showed the presence of proteins that could bind to the AGGGG-element in nag1 and ech42. We therefore conclude that seb1 encodes a protein that is involved in the osmotic stress response, but not in chitinase gene expression, in T. atroviride

    Molecular cloning and expression of the nag1 gene (N-acetyl-B-D-glucosaminidase-encoding) gene from Trichoderma harzianum P1

    No full text

    The bgl1 gene of Trichoderma reesei QM 9414 encodes an extracellular, cellulose-inducible β-glucosidase involved in cellulase induction by sophorose

    No full text
    We have investigated the effect of disruption of the bgl1-(β-glucosidase l-encoding) gene of Trichoderma reesei on the formation of other β-glucosidase activities and on the induction of cellulases. To this end the bgl1 locus was disrupted by insertion of the Aspergillus nidulans amdS (acetamidase-encoding) gene. The bgl1-disrupted strain did not produce the 75kDa extracellular β-glucosidase on cellulose or lactose, but still formed β-glucosidase activity on glucose, cellobiose, xylan or β-1,3-glucan, suggesting that the enzyme(s) exhibiting this β-glucosidase activity is (are) not encoded by bgl1. The cellulose-inducer sophorose induced the bgl1-encoded β-glucosidase, whereas the remaining β-glucosidase activity was induced by methyl-β-D-glucoside. The bgl1-gene product was mainly secreted into the medium, whereas the other β-glucosidase activity was mainly associated with the cells. A bgl1-multicopy strain formed higher amounts of cellulases than the parent strain. Nonsaturating concentrations of sophorose efficiently induced cellobiohydrolase I formation in the bgl1-multicopy strain, but less efficiently in the bgl1-disrupted strain. The multicopy strain and the parent strain were comparably efficient at saturating sophorose concentrations. The β-glucosidase inhibitor nojirimycin strongly inhibited induction in all strains. These data suggest that the bgl1-encoded β-glucosidase is not identical to the plasma-membrane-bound, constitutive, methyl-β-glucoside inducible β-glucosidase, but represents an extracellular cellulose-induced enzyme. Both enzymes contribute to rapid induction of cellulases by modifying the inducer sophorose.Peer reviewe
    corecore