552 research outputs found
Decomposition unit Patent
Unit for generating thrust from catalytic decomposition of hydrogen peroxide, for high altitude aircraft or spacecraft reaction contro
Cellular automaton decoders for topological quantum codes with noisy measurements and beyond
We propose an error correction procedure based on a cellular automaton, the sweep rule, which is applicable to a broad range of codes beyond topological quantum codes. For simplicity, however, we focus on the three-dimensional toric code on the rhombic dodecahedral lattice with boundaries and prove that the resulting local decoder has a non-zero error threshold. We also numerically benchmark the performance of the decoder in the setting with measurement errors using various noise models. We find that this error correction procedure is remarkably robust against measurement errors and is also essentially insensitive to the details of the lattice and noise model. Our work constitutes a step towards finding simple and high-performance decoding strategies for a wide range of quantum low-density parity-check codes
Order preserving pattern matching on trees and DAGs
The order preserving pattern matching (OPPM) problem is, given a pattern
string and a text string , find all substrings of which have the
same relative orders as . In this paper, we consider two variants of the
OPPM problem where a set of text strings is given as a tree or a DAG. We show
that the OPPM problem for a single pattern of length and a text tree
of size can be solved in time if the characters of are
drawn from an integer alphabet of polynomial size. The time complexity becomes
if the pattern is over a general ordered alphabet. We
then show that the OPPM problem for a single pattern and a text DAG is
NP-complete
Concentrations of , radionuclides and some heavy metals in soil samples of Chochołowska Valley from Tatra National Park
This paper presents the results of determination of artificial and natural activity concentrations
and some heavy metals in soil samples from the region of one of the main valleys of Tatra National Park
(Chochołowska). Our investigation concentrated on and heavy metal levels in mountain soil taken
from Chochołowska Valley, which revealed great variability in their concentration. The results show considerably
small amounts of radionuclides and in the soils. Larger amounts of those elements can
be found in the organic surface horizons of the soils. The evaluation of the content of those elements must
be based on the bulk density analysis of the soil
Orbit Determination with the two-body Integrals
We investigate a method to compute a finite set of preliminary orbits for
solar system bodies using the first integrals of the Kepler problem. This
method is thought for the applications to the modern sets of astrometric
observations, where often the information contained in the observations allows
only to compute, by interpolation, two angular positions of the observed body
and their time derivatives at a given epoch; we call this set of data
attributable. Given two attributables of the same body at two different epochs
we can use the energy and angular momentum integrals of the two-body problem to
write a system of polynomial equations for the topocentric distance and the
radial velocity at the two epochs. We define two different algorithms for the
computation of the solutions, based on different ways to perform elimination of
variables and obtain a univariate polynomial. Moreover we use the redundancy of
the data to test the hypothesis that two attributables belong to the same body
(linkage problem). It is also possible to compute a covariance matrix,
describing the uncertainty of the preliminary orbits which results from the
observation error statistics. The performance of this method has been
investigated by using a large set of simulated observations of the Pan-STARRS
project.Comment: 23 pages, 1 figur
- …