3 research outputs found

    Epigenetic Response of Yarrowia lipolytica to Stress: Tracking Methylation Level and Search for Methylation Patterns via Whole-Genome Sequencing

    No full text
    DNA methylation is a common, but not universal, epigenetic modification that plays an important role in multiple cellular processes. While definitely settled for numerous plant, mammalian, and bacterial species, the genome methylation in different fungal species, including widely studied and industrially-relevant yeast species, Yarrowia lipolytica, is still a matter of debate. In this paper, we report a differential DNA methylation level in the genome of Y. lipolytica subjected to sequential subculturing and to heat stress conditions. To this end, we adopted repeated batch bioreactor cultivations of Y. lipolytica subjected to thermal stress in specific time intervals. To analyze the variation in DNA methylation between stressed and control cultures, we (a) quantified the global DNA methylation status using an immuno-assay, and (b) studied DNA methylation patterns through whole-genome sequencing. Primarily, we demonstrated that 5 mC modification can be detected using a commercial immuno-assay, and that the modifications are present in Y. lipolytica’s genome at ~0.5% 5 mC frequency. On the other hand, we did not observe any changes in the epigenetic response of Y. lipolytica to heat shock (HS) treatment. Interestingly, we identified a general phenomenon of decreased 5 mC level in Y. lipolytica’s genome in the stationary phase of growth, when compared to a late-exponential epigenome. While this study provides an insight into the subculturing stress response and adaptation to the stress at epigenetic level by Y. lipolytica, it also leaves an open question of inability to detect any genomic DNA methylation level (either in CpG context or context-less) through whole-genome sequencing. The results of ONT sequencing, suggesting that 5 mC modification is either rare or non-existent in Y. lipolytica genome, are contradicted with the results of the immunoassay

    Hyperosmolarity adversely impacts recombinant protein synthesis by Yarrowia lipolytica : molecular background revealed by quantitative proteomics

    No full text
    ABSTRACT: In this research, we were interested in answering a question whether subjecting a Yarrowia lipolytica strain overproducing a recombinant secretory protein (rs-Prot) to pre-optimized stress factors may enhance synthesis of the rs-Prot. Increased osmolarity (3 Osm kg(−1)) was the primary stress factor implemented alone or in combination with decreased temperature (20 °C), known to promote synthesis of rs-Prots. The treatments were executed in batch bioreactor cultures, and the cellular response was studied in terms of culture progression, gene expression and global proteomics, to get insight into molecular bases underlying an awaken reaction. Primarily, we observed that hyperosmolarity executed by high sorbitol concentration does not enhance synthesis of the rs-Prot but increases its transcription. Expectedly, hyperosmolarity induced synthesis of polyols at the expense of citric acid synthesis and growth, which was severely limited. A number of stress-related proteins were upregulated, including heat-shock proteins (HSPs) and aldo–keto reductases, as observed at transcriptomics and proteomics levels. Concerted downregulation of central carbon metabolism, including glycolysis, tricarboxylic acid cycle and fatty acid synthesis, highlighted redirection of carbon fluxes. Elevated abundance of HSPs and osmolytes did not outbalance the severe limitation of protein synthesis, marked by orchestrated downregulation of translation (elongation factors, several aa-tRNA synthetases), amino acid biosynthesis and ribosome biogenesis in response to the hyperosmolarity. Altogether we settled that increased osmolarity is not beneficial for rs-Prots synthesis in Y. lipolytica, even though some elements of the response could assist this process. Insight into global changes in the yeast proteome under the treatments is provided. KEY POINTS: • Temp enhances, but Osm decreases rs-Prots synthesis by Y. lipolytica. • Enhanced abundance of HSPs and osmolytes is overweighted by limited translation. • Global proteome under Osm, Temp and Osm Temp treatments was studied. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00253-021-11731-y

    Epigenetic response of yarrowia lipolytica to stress: tracking methylation level and search for methylation patterns via whole-genome sequencing

    No full text
    DNA methylation is a common, but not universal, epigenetic modification that plays an important role in multiple cellular processes. While definitely settled for numerous plant, mammalian, and bacterial species, the genome methylation in different fungal species, including widely studied and industrially-relevant yeast species, Yarrowia lipolytica, is still a matter of debate. In this paper, we report a differential DNA methylation level in the genome of Y. lipolytica subjected to sequential subculturing and to heat stress conditions. To this end, we adopted repeated batch bioreactor cultivations of Y. lipolytica subjected to thermal stress in specific time intervals. To analyze the variation in DNA methylation between stressed and control cultures, we (a) quantified the global DNA methylation status using an immuno-assay, and (b) studied DNA methylation patterns through whole-genome sequencing. Primarily, we demonstrated that 5 mC modification can be detected using a commercial immuno-assay, and that the modifications are present in Y. lipolytica's genome at ~0.5% 5 mC frequency. On the other hand, we did not observe any changes in the epigenetic response of Y. lipolytica to heat shock (HS) treatment. Interestingly, we identified a general phenomenon of decreased 5 mC level in Y. lipolytica's genome in the stationary phase of growth, when compared to a late-exponential epigenome. While this study provides an insight into the subculturing stress response and adaptation to the stress at epigenetic level by Y. lipolytica, it also leaves an open question of inability to detect any genomic DNA methylation level (either in CpG context or context-less) through whole-genome sequencing. The results of ONT sequencing, suggesting that 5 mC modification is either rare or non-existent in Y. lipolytica genome, are contradicted with the results of the immunoassay.This research was financially supported by the Ministry of Science and Higher Education in Poland, project No. DI2017 001047 (in the part concerning stress-response) and partly by Poznan University of Life Sciences, project No. 506.771.09.00 B (in the part concerning methylation and genome sequencing). L.P.P. is supported by funding from the European Union’s H2020 research and innovation programme under Marie Sklodowska-Curie grant agreement No. 75442
    corecore