123 research outputs found

    Effects of electron transfer on the stability of hydrogen bonds.

    Get PDF
    The measurement of the dimerization constants of hydrogen-bonded ruthenium complexes (12, 22, 32) linked by a self-complementary pair of 4-pyridylcarboxylic acid ligands in different redox states is reported. Using a combination of FTIR and UV/vis/NIR spectroscopies, the dimerization constants (KD) of the isovalent, neutral states, 12, 22, 32, were found to range from 75 to 130 M-1 (ΔG0 = -2.56 to -2.88 kcal mol-1), while the dimerization constants (K2-) of the isovalent, doubly-reduced states, (12)2-, (22)2-, (32)2-, were found to range from 2000 to 2500 M-1 (ΔG0 = -4.5 to -4.63 kcal mol-1). From the aforementioned values and the comproportionation constant for the mixed-valent dimers, the dimerization constants (KMV) of the mixed-valent, hydrogen-bonded dimers, (12)-, (22)-, (32)-, were found to range from 0.5 × 106 to 1.2 × 106 M-1 (ΔG0 = -7.78 to -8.31 kcal mol-1). On average, the hydrogen-bonded, mixed-valent states are stabilized by -5.27 (0.04) kcal mol-1 relative to the isovalent, neutral, hydrogen-bonded dimers and -3.47 (0.06) kcal mol-1 relative to the isovalent, dianionic hydrogen bonded dimers. Electron exchange in the mixed valence states imparts significant stability to hydrogen bonding. This is the first quantitative measurement of the strength of hydrogen bonds in the presence and absence of electronic exchange

    Chemical approaches to carbon dioxide utilization for manned Mars missions

    Get PDF
    Use of resources available in situ is a critical enabling technology for a permanent human presence in space. A permanent presence on Mars, e.g., requires a large infrastructure to sustain life under hostile conditions. As a resource on Mars, atmospheric CO2 is as follows: abundant; available at all points on the surface; of known presence; chemically simple; and can be obtained by simple compression. Many studies focus on obtaining O2 and the various uses for O2 including life support and fuel; discussion of CO, the coproduct from CO2 fixation revolves around its uses as a fuel, being oxidized back to CO2. Several new proposals are studied for CO2 fixation through chemical, photochemical, and photoelectrochemical means. For example, the reduction of CO2 to hydrocarbons such as acetylene (C2H2) can be accomplished with H2. C2H2 has a theoretical vacuum specific impulse of approx. 375 secs. Potential uses were also studied of CO2, as obtained or further reduced to carbon, as a reducing agent in metal oxide processing to form metals or metal carbides for use as structural or power materials; the CO2 can be recycled to generate O2 and CO

    Addressing the Mars ISRU Challenge: Production of Oxygen and Fuel from CO_2 using Sunlight

    Get PDF
    Advanced exploration of Mars, particularly human missions, will require vast amounts of fuel and oxygen for extended campaigns and the return of samples or humans back to Earth. If fuel and oxygen can be prepared on Mars from in-situ resources, this would greatly reduce the launch mass of the mission from Earth. In this Keck Institute for Space Sciences (KISS) study, the viability of Mars near-ambient temperature photoelectrochemical (PEC) or electrochemical (EC) production of fuel and oxygen from atmospheric carbon dioxide—with or without available water—was examined. With PEC devices incorporated into lightweight, large-area structures operating near 25°C and collecting solar energy to directly convert carbon dioxide into oxygen, it may be possible to reduce the launch mass (compared with bringing oxygen directly from Earth) by a factor of three or more. There are other numerous benefits of such a system relative to other in-situ resource utilization (ISRU) schemes, notably reduced thermal management (e.g., lower heating demand and decreased amplitude of thermal cycling) and the elimination of a need for a fission power source. However, there are considerable technical hurdles that must be surmounted before a PEC or EC ISRU system could be competitive with other more mature ISRU approaches, such as solid oxide electrolysis (SOXE) technology. Noteworthy challenges include: the identification of highly stable homogeneous or heterogeneous catalysts for oxygen evolution and carbon monoxide or methane evolution; quantification of long-term operation under the harsh Martian conditions; and appropriate coupled catalyst–light absorber systems that can be reliably stowed then deployed over large areas, among other challenges described herein. This report includes recommendations for future work to assess the viability of and advance the state-of-the-art for EC and PEC technologies for future ISRU applications. Importantly, the challenges of mining, transporting, purifying, and delivering water from Mars resources to a PEC or EC reactor system, development and demonstration of a low-temperature-capable, non-aqueous-based CO2 reduction scheme as described below is perhaps the first logical step toward implementing an efficient near-surface Mars temperature oxygen generation system on Mars

    A Series of Diamagnetic Pyridine Monoimine Rhenium Complexes with Different Degrees of Metal-to-Ligand Charge Transfer: Correlating ^(13)C NMR Chemical Shifts with Bond Lengths in Redox-Active Ligands

    Get PDF
    A set of pyridine monoimine (PMI) rhenium(I) tricarbonyl chlorido complexes with substituents of different steric and electronic properties was synthesized and fully characterized. Spectroscopic (NMR and IR) and single-crystal X-ray diffraction analyses of these complexes showed that the redox-active PMI ligands are neutral and that the overall electronic structure is little affected by the choices of the substituent at the ligand backbone. One- and two-electron reduction products were prepared from selected starting compounds and could also be characterized by multiple spectroscopic methods and X-ray diffraction. The final product of a one-electron reduction in THF is a diamagnetic metal–metal-bonded dimer after loss of the chlorido ligand. Bond lengths in and NMR chemical shifts of the PMI ligand backbone indicate partial electron transfer to the ligand. Two-electron reduction in THF also leads to the loss of the chlorido ligand and a pentacoordinate complex is obtained. The comparison with reported bond lengths and ^(13)C NMR chemical shifts of doubly reduced free pyridine monoaldimine ligands indicates that both redox equivalents in the doubly reduced rhenium complex investigated here are located in the PMI ligand. With diamagnetic complexes varying over three formal reduction stages at the PMI ligand we were, for the first time, able to establish correlations of the ^(13)C NMR chemical shifts with the relevant bond lengths in redox-active ligands over a full redox series

    Addressing the Mars ISRU Challenge: Production of Oxygen and Fuel from CO_2 using Sunlight

    Get PDF
    Advanced exploration of Mars, particularly human missions, will require vast amounts of fuel and oxygen for extended campaigns and the return of samples or humans back to Earth. If fuel and oxygen can be prepared on Mars from in-situ resources, this would greatly reduce the launch mass of the mission from Earth. In this Keck Institute for Space Sciences (KISS) study, the viability of Mars near-ambient temperature photoelectrochemical (PEC) or electrochemical (EC) production of fuel and oxygen from atmospheric carbon dioxide—with or without available water—was examined. With PEC devices incorporated into lightweight, large-area structures operating near 25°C and collecting solar energy to directly convert carbon dioxide into oxygen, it may be possible to reduce the launch mass (compared with bringing oxygen directly from Earth) by a factor of three or more. There are other numerous benefits of such a system relative to other in-situ resource utilization (ISRU) schemes, notably reduced thermal management (e.g., lower heating demand and decreased amplitude of thermal cycling) and the elimination of a need for a fission power source. However, there are considerable technical hurdles that must be surmounted before a PEC or EC ISRU system could be competitive with other more mature ISRU approaches, such as solid oxide electrolysis (SOXE) technology. Noteworthy challenges include: the identification of highly stable homogeneous or heterogeneous catalysts for oxygen evolution and carbon monoxide or methane evolution; quantification of long-term operation under the harsh Martian conditions; and appropriate coupled catalyst–light absorber systems that can be reliably stowed then deployed over large areas, among other challenges described herein. This report includes recommendations for future work to assess the viability of and advance the state-of-the-art for EC and PEC technologies for future ISRU applications. Importantly, the challenges of mining, transporting, purifying, and delivering water from Mars resources to a PEC or EC reactor system, development and demonstration of a low-temperature-capable, non-aqueous-based CO2 reduction scheme as described below is perhaps the first logical step toward implementing an efficient near-surface Mars temperature oxygen generation system on Mars

    Electrocatalytic CO2 reduction by M(bpy-R)(CO)4 (M = Mo, W; R = H, tBu) complexes. Electrochemical, spectroscopic, and computational studies and comparison with group 7 catalysts

    Get PDF
    The tetracarbonyl molybdenum and tungsten complexes of 2,2′-bipyridine and 4,4′-di-tert-butyl-2,2′-bipyridine (M(bpy-R)(CO)4; R = H, M = Mo (1), W (2); R = tBu, M = Mo (3), W (4)) are found to be active electrocatalysts for the reduction of CO2. The crystal structures of M(bpy-tBu)(CO)4 (M = Mo (3), W (4)), the singly reduced complex [W(bpy)(CO)4][K(18-crown-6] (5) and the doubly reduced complex [W(bpy-tBu)(CO)3][K(18-crown-6)]2 (6) are reported. DFT calculations have been used to characterize the reduced species from the reduction of W(bpy-tBu)(CO)4 (4). These compounds represent rare examples of group 6 electrocatalysts for CO2 reduction, and comparisons are made with the related group 7 complexes that have been studied extensively for CO2 reduction
    • …
    corecore