8 research outputs found

    Manipulating charge transfer excited state relaxation and spin crossover in iron coordination complexes with ligand substitution

    Get PDF
    Developing light-harvesting and photocatalytic molecules made with iron could provide a cost effective, scalable, and environmentally benign path for solar energy conversion. To date these developments have been limited by the sub-picosecond metal-to-ligand charge transfer (MLCT) electronic excited state lifetime of iron based complexes due to spin crossover-the extremely fast intersystem crossing and internal conversion to high spin metal-centered excited states. We revitalize a 30 year old synthetic strategy for extending the MLCT excited state lifetimes of iron complexes by making mixed ligand iron complexes with four cyanide (CN-;) ligands and one 2,2′-bipyridine (bpy) ligand. This enables MLCT excited state and metal-centered excited state energies to be manipulated with partial independence and provides a path to suppressing spin crossover. We have combined X-ray Free-Electron Laser (XFEL) Kβ hard X-ray fluorescence spectroscopy with femtosecond time-resolved UV-visible absorption spectroscopy to characterize the electronic excited state dynamics initiated by MLCT excitation of [Fe(CN)4(bpy)]2-. The two experimental techniques are highly complementary; the time-resolved UV-visible measurement probes allowed electronic transitions between valence states making it sensitive to ligand-centered electronic states such as MLCT states, whereas the Kβ fluorescence spectroscopy provides a sensitive measure of changes in the Fe spin state characteristic of metal-centered excited states. We conclude that the MLCT excited state of [Fe(CN)4(bpy)]2- decays with roughly a 20 ps lifetime without undergoing spin crossover, exceeding the MLCT excited state lifetime of [Fe(2,2′-bipyridine)3]2+ by more than two orders of magnitude

    Ligand manipulation of charge transfer excited state relaxation and spin crossover in [Fe(2,2'-bipyridine)_2(CN)_2]

    Get PDF
    We have used femtosecond resolution UV-visible and Kβ x-ray emission spectroscopy to characterize the electronic excited state dynamics of [Fe(bpy)_2(CN)_2], where bpy=2,2'-bipyridine, initiated by metal-to-ligand charge transfer (MLCT) excitation. The excited-state absorption in the transient UV-visible spectra, associated with the 2,2'-bipyridine radical anion, provides a robust marker for the MLCT excited state, while the transient Kβ x-ray emission spectra provide a clear measure of intermediate and high spin metal-centered excited states. From these measurements, we conclude that the MLCT state of [Fe(bpy)_2(CN)_2] undergoes ultrafast spin crossover to a metal-centered quintet excited state through a short lived metal-centered triplet transient species. These measurements of [Fe(bpy)_2(CN)_2] complement prior measurement performed on [Fe(bpy)_3]^(2+) and [Fe(bpy)_4(CN)]^(2-) in dimethylsulfoxide solution and help complete the chemical series [Fe(bpy)_N(CN)_(6-2N)]^(2N-4), where N = 1-3. The measurements confirm that simple ligand modifications can significantly change the relaxation pathways and excited state lifetimes and support the further investigation of light harvesting and photocatalytic applications of 3 transition metal complexes

    Transmission zone plates as analyzers for efficient parallel 2D RIXS-mapping

    No full text
    We have implemented and successfully tested an off-axis transmission Fresnel zone plate as spectral analyzer for resonant inelastic X-ray scattering (RIXS). The imaging capabilities of zone plates allow for advanced two-dimensional (2D) mapping applications. By varying the photon energy along a line focus on the sample, we were able to simultaneously record the emission spectra over a range of excitation energies. Moreover, by scanning a line focus across the sample in one dimension, we efficiently recorded RIXS spectra spatially resolved in 2D, increasing the throughput by two orders of magnitude. The presented scheme opens up a variety of novel measurements and efficient, ultra-fast time resolved investigations at X-ray Free-Electron Laser sources

    Tracking excited-state charge and spin dynamics in iron coordination complexes

    Get PDF
    Crucial to many light-driven processes in transition metal complexes is the absorption and dissipation of energy by 3d electrons. But a detailed understanding of such non-equilibrium excited-state dynamics and their interplay with structural changes is challenging: a multitude of excited states and possible transitions result in phenomena too complex to unravel when faced with the indirect sensitivity of optical spectroscopy to spin dynamics5 and the flux limitations of ultrafast X-ray sources. Such a situation exists for archetypal polypyridyl iron complexes, such as [Fe(2,2bipyridine)3]2+[Fe(2,2′-bipyridine)_{3}]^{2+}, where the excited-state charge and spin dynamics involved in the transition from a low- to a high-spin state (spin crossover) have long been a source of interest and controversy. Here we demonstrate that femtosecond resolution X-ray fluorescence spectroscopy, with its sensitivity to spin state, can elucidate the spin crossover dynamics of [Fe(2,2bipyridine)3]2+[Fe(2,2′-bipyridine)_{3}]^{2+} on photoinduced metal-to-ligand charge transfer excitation. We are able to track the charge and spin dynamics, and establish the critical role of intermediate spin states in the crossover mechanism. We anticipate that these capabilities will make our method a valuable tool for mapping in unprecedented detail the fundamental electronic excited-state dynamics that underpin many useful light-triggered molecular phenomena involving 3d transition metal complexes
    corecore