20 research outputs found
Low-frequency magnetic sensing by magnetoelectric metglas/bidomain LiNbO3 long bars
We present an investigation into the magnetic sensing performance of magnetoelectric bilayered metglas / bidomain LiNbO3 long thin bars operating in a cantilever or free vibrating regime and under quasi-static and low-frequency resonant conditions. Bidomain single crystals of Y+128o-cut LiNbO3 were engineered by an improved diffusion annealing technique with a polarization macrodomain structure of the “head-to-head” and “tail-to-tail” type. Long composite bars with lengths of 30, 40 and 45 mm, as well as with and without attached small tip proof masses, were studied. ME coefficients as large as 550 V/cm∙Oe, corresponding to a conversion ratio of 27.5 V/Oe, were obtained under resonance conditions at frequencies of the order of 100 Hz in magnetic bias fields as low as 2 Oe. Equivalent magnetic noise spectral densities down to 120 pT/Hz1/2 at 10 Hz and to 68 pT/Hz1/2 at a resonance frequency as low as 81 Hz were obtained for the 45 mm long cantilever bar with a tip proof mass of 1.2 g. In the same composite without any added mass the magnetic noise was shown to be as low as 37 pT/Hz1/2 at a resonance frequency of 244 Hz and 1.2 pT/Hz1/2 at 1335 Hz in a fixed cantilever and free vibrating regimes, respectively. A simple unidimensional dynamic model predicted the possibility to drop the low-frequency magnetic noise by more than one order of magnitude in case all the extrinsic noise sources are suppressed, especially those related to external vibrations, and the thickness ratio of the magnetic-to-piezoelectric phases is optimized. Thus, we have shown that such systems might find use in simple and sensitive room-temperature low-frequency magnetic sensors, e.g., for biomedical applications.publishe
Magnetoelectric metglas/bidomain y + 140°-cut lithium niobate composite for sensing fT magnetic fields
We investigated the magnetoelectric properties of a new laminate composite material based on y+140°-cut congruent lithium niobate piezoelectric plates with an antiparallel polarized “head-to-head” bidomain structure and metglas used as a magnetostrictive layer. A series of bidomain lithium niobate crystals were prepared by annealing under conditions of Li2O outdiffusion from LiNbO3 with a resultant growth of an inversion domain. The measured quasi-static magnetoelectric coupling coefficient achieved |αE31| = 1.9 V·(cm·Oe)–1. At a bending resonance frequency of 6862 Hz, we found a giant |αE31| value up to 1704 V·(cm·Oe)–1. Furthermore, the equivalent magnetic noise spectral density of the investigated composite material was only 92 fT/Hz1/2, a record value for such a low operation frequency. The magnetic-field detection limit of the laminated composite was found to be as low as 200 fT in direct measurements without any additional shielding from external noises.publishe
Electrophysical properties, memristive and resistive switching of charged domain walls in lithium niobate
Charged domain walls (CDWs) in ferroelectric materials raise both fundamental and practical interest due to their electrophysical properties differing from bulk ones. On a microstructure level, CDWs in ferroelectrics are 2D defects separating regions with different spontaneous polarization vector directions. Screening of electric field of the CDW's bound ionic charges by mobile carriers leads to the formation of elongated narrow channels with an elevated conductivity in initially dielectric materials. Controlling the position and inclination angle of CDW relative to the spontaneous polarization direction, one can change its conductivity over a wide range thus providing good opportunities for developing memory devices, including neuromorphic systems. This review describes the state of art in the formation and application of CDWs in single crystal uniaxial ferroelectric lithium niobate (LiNbO3, LN), as resistive and memristive switching devices. The main CDWs formation methods in single crystal and thin-film LN have been described, and modern data have been presented on the electrophysical properties and electrical conductivity control methods of CDWs. Prospects of CDWs application in resistive and memristive switching memory devices have been discussed
Effect of contact phenomena on the electrical conductivity of reduced lithium niobate
Lithium niobate is a ferroelectric material finding a wide range of applications in optical and acoustic engineering. Annealing of lithium niobate crystals in an oxygen-free environment leads to appearance of black coloration and concomitant increasing electrical conductivity due to chemical reduction. There are plenty of literary data on the electrophysical properties of reduced lithium niobate crystals though contact phenomena occurring during electrical conductivity measurement as well as issues of interaction between the electrode material and the test specimens are almost disregarded. The effect of chromium and indium tin oxide electrodes on the results of measurements of electrophysical parameters at room temperature for lithium niobate specimens reduced at 1100 °C has been investigated. It was found that significant nonlinearities in the VACs of the specimens at below 5 V distort the specific resistivity readings for lithium niobate. This requires measurements at higher voltages. Impedance spectroscopy studies have shown that the measurement results are largely affected by capacities including those probably induced near the contacts. It has been shown that the experimental results are described adequately well by a model implying the presence of near-contact capacities that are parallel to the specimen’s own capacity. Possible mechanism of the induction of these capacities has been described and a hypothesis has been proposed of the high density of electron states at the electrode/specimen interface that can trap carriers, the concentration of trapped carriers growing with an increase in annealing duration
Effect of contact phenomena on the electrical conductivity of reduced lithium niobate
Lithium niobate is a ferroelectric material finding a wide range of applications in optical and acoustic engineering. Annealing of lithium niobate crystals in an oxygen-free environment leads to appearance of black coloration and concomitant increasing electrical conductivity due to chemical reduction. There are plenty of literary data on the electrophysical properties of reduced lithium niobate crystals though contact phenomena occurring during electrical conductivity measurement as well as issues of interaction between the electrode material and the test specimens are almost disregarded. The effect of chromium and indium tin oxide electrodes on the results of measurements of electrophysical parameters at room temperature for lithium niobate specimens reduced at 1100 °C has been investigated. It was found that significant nonlinearities in the VACs of the specimens at below 5 V distort the specific resistivity readings for lithium niobate. This requires measurements at higher voltages. Impedance spectroscopy studies have shown that the measurement results are largely affected by capacities including those probably induced near the contacts. It has been shown that the experimental results are described adequately well by a model implying the presence of near-contact capacities that are parallel to the specimen’s own capacity. Possible mechanism of the induction of these capacities has been described and a hypothesis has been proposed of the high density of electron states at the electrode/specimen interface that can trap carriers, the concentration of trapped carriers growing with an increase in annealing duration
Enhancement of piezoelectric properties of lithium niobate thin films by different annealing parameters
Piezoelectric materials with useful properties find a wide range of applications including opto- and acousto- electronics. Lithium niobate in the form of a thin film is one of those promising materials and has a potential to improve ferroelectric random access memories devices, optical waveguides or acoustic delay lines by virtue of its physical characteristics, e.g. electro-optic coefficient, acoustic velocity, refractive indices etc. The key challenge to overcome is lithium nonstoichiometry as it leads to the appearance of parasite phases and thus aggravates physical and structural properties of a film. According to literature data, in order to obtain microcrystalline piezoelectric phase in previously amorphous films a set of methods is used. In our case we tried to synthesize LN films using congruent target and non-heated silicon substrate and then attain the piezoelectric phase by different annealing parameters. Afterwards LN films were compared to the ones synthesized on the silicon substrate with an additional buffer layer of platinum. Samples were studied by scanning probe microscope. Self-polarization vectors were defined. Based on domain structure images, the histograms of distribution of piezoresponse signals were built
Detection of inhomogeneous magnetic fields using magnetoelectric composites
Magnetoelectric (ME) composites have a wide range of possible applications, especially as room-temperature sensors of weak magnetic fields in magnetocardiography and magnetoencephalography medical diagnostic equipment. In most works on ME composites, structures are tested in uniform magnetic fields; however, for practical application, detailed knowledge of their behaviour in inhomogeneous magnetic fields (IMFs) is necessary. In this work, we measured IMFs with radial symmetry produced by alternate currents (AC) passing through an individual thin wire upon different placements of an ME sensor. An ME self-biased b-LN/Ni/Metglas structure with a sensitivity to the magnetic field of 120 V/T was created for IMF detection. The necessity of an external biasing magnetic field was avoided by the inclusion of a nickel layer having remanent magnetization. The ME composite shows a non-zero ME coefficient of 0.24 V/(cm · Oe) in the absence of an external DC magnetic field. It is shown that the output voltage amplitude from the ME composite, which is located in an AC IMF, is dependent on the relative position of the investigated sample and magnetic field lines. Maximum ME signal is obtained when the long side of the ME sample is perpendicular to the wire, and the symmetry plane which divides the long side into two similar pieces contains the wire axis. In the frequency range from 400 Hz to 1000 Hz in the absence of vibrational and other noises, the detection limit amounts to (2 ± 0.4) nT/Hz1/2
Detection of inhomogeneous magnetic fields using magnetoelectric composites
Magnetoelectric (ME) composites have a wide range of possible applications, especially as room-temperature sensors of weak magnetic fields in magnetocardiography and magnetoencephalography medical diagnostic equipment. In most works on ME composites, structures are tested in uniform magnetic fields; however, for practical application, detailed knowledge of their behaviour in inhomogeneous magnetic fields (IMFs) is necessary. In this work, we measured IMFs with radial symmetry produced by alternate currents (AC) passing through an individual thin wire upon different placements of an ME sensor. An ME self-biased b-LN/Ni/Metglas structure with a sensitivity to the magnetic field of 120 V/T was created for IMF detection. The necessity of an external biasing magnetic field was avoided by the inclusion of a nickel layer having remanent magnetization. The ME composite shows a non-zero ME coefficient of 0.24 V/(cm · Oe) in the absence of an external DC magnetic field. It is shown that the output voltage amplitude from the ME composite, which is located in an AC IMF, is dependent on the relative position of the investigated sample and magnetic field lines. Maximum ME signal is obtained when the long side of the ME sample is perpendicular to the wire, and the symmetry plane which divides the long side into two similar pieces contains the wire axis. In the frequency range from 400 Hz to 1000 Hz in the absence of vibrational and other noises, the detection limit amounts to (2 ± 0.4) nT/Hz1/2
Magnetoelectric effect in three-layered gradient LiNbO3/Ni/Metglas composites
The effect of annealing in a permanent magnetic field on the magnitude of magnetoelectric coefficient in three-layered gradient magnetoelectric LiNbO3/Ni/Metglas composites has been studied. A method of electrochemical nickel deposition on bidomain lithium niobate crystals has been demonstrated. We show that the optimum annealing temperature in a permanent magnetic field for the generation of the highest remanence in the Ni layer is 350 °C. The specimens annealed at this temperature exhibit the greatest shift of the magnetoelectric coefficient dependence on external magnetic field magnitude relative to the value Hdc = 0. The quasi-static magnetoelectric coefficient in the absence of an external magnetic field proves to be 1.2 V/(cm ∙ Oe). The highest magnetoelectric coefficient that has been achieved at a bending structure resonance frequency of 278 Hz proves to be 199.3 V/(cm ∙ Oe) without application of an external magnetic field. The experimental magnetoelectric coefficient figures for three-layered gradient LiNbO3/Ni/Metglas composites are not inferior to those for most magnetoelectric composite materials reported earlier