84 research outputs found
Time evolution of spin state of radical ion pair in microwave field: An analytical solution
The paper reports an exact solution for the problem of spin evolution of
radical ion pair in static magnetic and resonant microwave field taking into
account Zeeman and hyperfine interactions and spin relaxation. The values of
parameters that provide one of the four possible types of solution are
analysed. It is demonstrated that in the absence of spin relaxation, besides
the zero field invariant an invariant at large amplitudes of the resonant
microwave field can be found. The two invariants open the possibility for
simple calculation of microwave pulses to control quantum state of the radical
pair. The effect of relaxation on the invariants is analysed and it is shown
that changes in the high field invariant are induced by phase relaxation.Comment: 18 pages, 7 figure
Simulation of Coherent Diffraction Radiation Generation by Pico-Second Electron Bunches in an Open Resonator
In this report we present new approach for calculation of processes of diffraction radiation generation, storage and decay in an open resonator based on generalized surface current method. The radiation characteristics calculated using the developed approach were compared with those calculated using Gaussian-Laguerre modes method. The comparison shows reasonable coincidence of the results that allows to use developed method for investigation of more complicated resonators
Cluster analysis and classification of process data by use of principal curves
Thesis (M.Ing.) -- University of Stellenbosch, 1999.ENGLISH SUMMARY: In this thesis a new method of clustering as wen as a new method of classification is
proposed. Cluster analysis is a statistical method used to search for natural groups in
an unstructured multivariate data set. Clusters are obtained in such. a way that the
observations belonging to the same group are more alike than observations across
groups. For instance, long data records are found in mineral processing plants, where
the data can be reduced to clusters according to different ore types. Most of the
existing clustering methods do not give reliable results when applied to engineering
data, since these methods were mainly developed in the domains of psychology and
biology.
Classification analysis can be regarded as the natural continuation of cluster analysis.
In order to classify objects, two types of observations are needed. The first are those
observations whose group memberships are known a priori, which can be acquired
through cluster analysis. The second kind of observations are those whose group
memberships are unidentified. By means of classification these observations are
allocated to one of the existing groups.
Both of the proposed techniques are based on the use of a smooth one-dimensional
curve, passing through the middle of the data set. To formalise such an idea,
principal curves were developed by Hastie and Stuetzle (1989). A principal curve
summarises the data in a non-linear fashion. For clustering, the principal curve of the
entire unstructured data set is extracted. This one-dimensional representation of the
data set is then used to search for different clusters. For classification, a principal
curve is fitted to every known group in the data set. The observations to be assigned
to one of the known groups are allocated to the group closest to the new point.
Clustering with principal curves grouped engineering data better than most of the
well-known clustering algorithms. Some shortcomings of this method were also
established. Classification with principal curves gave similar, optimal results as compared to some existing classification methods. This classification method can be
applied to data of any distribution, unlike statistical classification techniques.AFRIKAANSE OPSOMMING: In hierdie tesis word 'n nuwe metode elk vir trosanalise en klassifikasie analise
voorgestel. Trosanalise is 'n statistiese tegniek waarrnee natuurlike groepe in 'n
ongestruktureerde meerveranderlike datastel gevind word. Groepe word op so 'n
wyse verkry dat die waamemings in dieselfde groep meer eenders is as waarnemings
tussen groepe. Byvoorbeeld, in mineraalaanlegte is lang datarekords algemeen, wat
deur middel van trosanalise gereduseer kan word na verskillende groepe,
ooreenkomstig verskillende ertstipes. Die meerderheid bestaande groeperingsmetodes
lewer nie betroubare resultate in hul toepassing op ingenieursdata nie, aangesien
hierdie tegnieke meestal hul oorsprong in die sielkundige en biologiese velde het.
Klassifikasie analise kan gesien word as die natuurlike opvolging van trosanalise.
Om objekte te klassifiseer, word gebruik gemaak van twee soorte waarnemings. Die
eerste tipe is daardie waamemings met a priori bekende groepsidentiteite, wat deur
trosanalise gevind kan word. Die tweede soort is die waarnemings met onbekende
groepsidentiteite. Elkeen van hierdie waarnemings kan deur middel van klassifikasie
toegewys word aan een van die bestaande groepe.
Beide hierdie voorgestelde tegnieke is gebaseer op die gebruik van 'n gladde, eendimensionele
kromme wat deur die middel van die datastel beweeg. Om hierdie idee
te formaliseer, is hoojkrommes ontwikkel deur Hastie en Stuetzle (1989). 'n
Hoofkromme gee 'n nie-lineere opsomming van die data. Vir groeperingsdoeleindes
word 'n hoofkromme uit die algehele ongestruktureerde datastel onttrek. Met
klassifikasie word'n hootkurwe aan elke bekende groep in die datastel gepas. Die
waameming wat aan een van die bestaande groepe toegewys moet word, word in die
groep naaste aan die betrokke punt geplaas.
Groepering met behulp van hoofkrommes, het met ingenieursdata beter resultate
gelewer as meeste van die bestaande tegnieke. Deur middel van praktiese voorbeelde
is sekere tekortkominge van hierdie groeperingsmetode vasgestel. Klassifikasie met behulp van hoofkrornmes lewer soortgelyke, optimale resultate as die van bekende
vergelykende tegnieke. Die voorgestelde klassifikasie tegniek kan toegepas word op
datastelle van enige verde ling, in teenstelling met die statistiese klassifikasietegnieke.Maste
Tamga Signs on a Silver Vessel from Yustyd (South Altai)
The author for the first time reproduces and interprets the tamga-like and other signs on the silver vessel, found by V.D. Kubarev in 1976 in the early medieval memorial enclosure in the valley of the river Yustyd in the South Altai. In all 12 signs were carved on the vessel, half of them make two groups. One of them includes the tamgas of the Ashina dynasty Turks-togyu in the form of a goat figure, the other is the Karluk tamgas shaped as an acute angle. Other tamgas probably belonged to Tiele tribes. The sign, carved on the base of the Yustyd vessel, resembles a runic letter (nč), the most likely interpretation of it is the name of the vessel’s owner – Ench. The tamgas of Karluks and Ashina Türk dynasty on the silver mug from Yustyd could be a symbol of the contracting an alliance and/or a system of suzerainty-vassalage of these two the large Turkic-speaking nomadic groups between each other in the period of the Second Turkic Khaganate. Based on the historical events known from written sources, the author dates back to 682–710 both the Yustyd complex and the tamgas, carved on the vessel
- …