20 research outputs found

    Differential expression profiling of components associated with exoskeletal hardening in crustaceans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exoskeletal hardening in crustaceans can be attributed to mineralization and sclerotization of the organic matrix. Glycoproteins have been implicated in the calcification process of many matrices. Sclerotization, on the other hand, is catalysed by phenoloxidases, which also play a role in melanization and the immunological response in arthropods. Custom cDNA microarrays from <it>Portunus pelagicus </it>were used to identify genes possibly associated with the activation pathways involved in these processes.</p> <p>Results</p> <p>Two genes potentially involved in the recognition of glycosylation, the C-type lectin receptor and the mannose-binding protein, were found to display molt cycle-related differential expression profiles. C-type lectin receptor up-regulation was found to coincide with periods associated with new uncalcified cuticle formation, while the up-regulation of mannose-binding protein occurred only in the post-molt stage, during which calcification takes place, implicating both in the regulation of calcification. Genes presumed to be involved in the phenoloxidase activation pathway that facilitates sclerotization also displayed molt cycle-related differential expression profiles. Members of the serine protease superfamily, trypsin-like and chymotrypsin-like, were up-regulated in the intermolt stage when compared to post-molt, while trypsin-like was also up-regulated in pre-molt compared to ecdysis. Additionally, up-regulation in pre- and intermolt stages was observed by transcripts encoding other phenoloxidase activators including the putative antibacterial protein carcinin-like, and clotting protein precursor-like. Furthermore, hemocyanin, itself with phenoloxidase activity, displayed an identical expression pattern to that of the phenoloxidase activators, i.e. up-regulation in pre- and intermolt.</p> <p>Conclusion</p> <p>Cuticle hardening in crustaceans is a complex process that is precisely timed to occur in the post-molt stage of the molt cycle. We have identified differential expression patterns of several genes that are believed to be involved in biomineralization and sclerotization and propose possible regulatory mechanisms for these processes based on their expression profiles, such as the potential involvement of C-type lectin receptors and mannose binding protein in the regulation of calcification.</p

    Gene expression profiling of cuticular proteins across the moult cycle of the crab Portunus pelagicus

    Get PDF
    Background: Crustaceans represent an attractive model to study biomineralization and cuticle matrix formation, as these events are precisely timed to occur at certain stages of the moult cycle. Moulting, the process by which crustaceans shed their exoskeleton, involves the partial breakdown of the old exoskeleton and the synthesis of a new cuticle. This cuticle is subdivided into layers, some of which become calcified while others remain uncalcified. The cuticle matrix consists of many different proteins that confer the physical properties, such as pliability, of the exoskeleton

    Endotoxin tolerance in abdominal aortic aneurysm macrophages, in vitro: a case–control study

    Get PDF
    Macrophages are implicated in the pathogenesis of abdominal aortic aneurysm (AAA). This study examined the environmentally conditioned responses of AAA macrophages to inflammatory stimuli. Plasma- and blood-derived monocytes were separated from the whole blood of patients with AAA (30-45 mm diameter; = 33) and sex-matched control participants ( = 44). Increased concentrations of pro-inflammatory and pro-oxidant biomarkers were detected in the plasma of AAA patients, consistent with systemic inflammation and oxidative stress. However, in monocyte-derived macrophages, a suppressed cytokine response was observed in AAA compared to the control following stimulation with lipopolysaccharide (LPS) (tumor necrosis factor alpha (TNF-α) 26.9 ± 3.3 vs. 15.5 ± 3.2 ng/mL, < 0.05; IL-6 3.2 ± 0.6 vs. 1.4 ± 0.3 ng/mL, < 0.01). LPS-stimulated production of 8-isoprostane, a biomarker of oxidative stress, was also markedly lower in AAA compared to control participants. These findings are consistent with developed tolerance in human AAA macrophages. As Toll-like receptor 4 (TLR4) has been implicated in tolerance, macrophages were examined for changes in TLR4 expression and distribution. Although TLR4 mRNA and protein expression were unaltered in AAA, cytosolic internalization of receptors and lipid rafts was found. These findings suggest the inflamed, pro-oxidant AAA microenvironment favors macrophages with an endotoxin-tolerant-like phenotype characterized by a diminished capacity to produce pro-inflammatory mediators that enhance the immune response

    Molecular insights into land snail neuropeptides through transcriptome and comparative gene analysis

    Get PDF
    Background: Snails belong to the molluscan class Gastropoda, which inhabit land, freshwater and marine environments. Several land snail species, including Theba pisana, are crop pests of major concern, causing extensive damage to agriculture and horticulture. A deeper understanding of their molecular biology is necessary in order to develop methods to manipulate land snail populations. Results: The present study used in silico gene data mining of T. pisana tissue transcriptomes to predict 24,920 central nervous system (CNS) proteins, 37,661 foot muscle proteins and 40,766 hepatopancreas proteins, which together have 5,236 unique protein functional domains. Neuropeptides, metabolic enzymes and epiphragmin genes dominated expression within the CNS, hepatopancreas and muscle, respectively. Further investigation of the CNS transcriptome demonstrated that it might contain as many as 5,504 genes that encode for proteins destined for extracellular secretion. Neuropeptides form an important class of cell-cell messengers that control or influence various complex metabolic events. A total of 35 full-length neuropeptide genes were abundantly expressed within T. pisana CNS, encoding precursors that release molluscan-type bioactive neuropeptide products. These included achatin, allototropin, conopressin, elevenin, FMRFamide, LFRFamide, LRFNVamide, myomodulins, neurokinin Y, PKYMDT, PXFVamide, sCAPamides and several insulin-like peptides. Liquid chromatography-mass spectrometry of neural ganglia confirmed the presence of many of these neuropeptides. Conclusions: Our results provide the most comprehensive picture of the molecular genes and proteins associated with land snail functioning, including the repertoire of neuropeptides that likely play significant roles in neuroendocrine signalling. This information has the potential to expedite the study of molluscan metabolism and potentially stimulate advances in the biological control of land snail pest species

    Moult cycle specific differential gene expression profiling of the crab Portunus pelagicus

    Get PDF
    Background: Crustacean moulting is a complex process involving many regulatory pathways. A holistic approach to examine differential gene expression profiles of transcripts relevant to the moulting process, across all moult cycle stages, was used in this study. Custom cDNA microarrays were constructed for Portunus pelagicus. The printed arrays contained 5000 transcripts derived from both the whole organism, and from individual organs such as the brain, eyestalk, mandibular organ and Y-organ from all moult cycle stages.Results: A total of 556 clones were sequenced from the cDNA libraries used to construct the arrays. These cDNAs represented 175 singletons and 62 contigs, resulting in 237 unique putative genes. The gene sequences were classified into the following biological functions: cuticular proteins associated with arthropod exoskeletons, farnesoic acid O-methyltransferase (FaMeT), proteins belonging to the hemocyanin gene family, lectins, proteins relevant to lipid metabolism, mitochondrial proteins, muscle related proteins, phenoloxidase activators and ribosomal proteins. Moult cycle-related differential expression patterns were observed for many transcripts. Of particular interest were those relating to the formation and hardening of the exoskeleton, and genes associated with cell respiration and energy metabolism.Conclusions: The expression data presented here provide a chronological depiction of the molecular events associated with the biological changes that occur during the crustacean moult cycle. Tracing the temporal expression patterns of a large variety of transcripts involved in the moult cycle of P. pelagicus can provide a greater understanding of gene function, interaction, and regulation of both known and new genes with respect to the moulting process

    Collusion is still a tricky topic: student perspectives of academic integrity using assessment-specific examples in a science subject

    No full text
    Academic integrity is important, not just in the university setting but beyond, as students graduate and move into professional fields. Discrepancies in the understanding of what constitutes academic dishonesty exist between institutional policies, discipline areas and individual educators, which creates challenges for students trying to uphold academic integrity. We examined the student perspective and understanding of academic integrity in the context of subject-specific assessment. Three sequential online academic integrity modules were presented in a large first-year biology subject (n = 631). Modules consisted of scenarios describing academic dishonesty in subject-specific assessment. Students received feedback which also highlighted the importance of academic integrity in future professions and were surveyed at the end of the semester. Students clearly identified examples of cheating, fraud and contract cheating. However, they did not recognise collusion when it happened with close and social contacts. Most students felt confident that they could apply their newly acquired knowledge of academic integrity in their future studies and professions. This study showed that the use of contextual and carefully curated subject-specific scenarios can create more knowledgeable and confident students who can successfully approach assessment with integrity. Additionally, it is important to make explicit to students what is deemed collusion in subject-specific contexts. Supplemental data for this article is available online at https://doi.org/10.1080/02602938.2022.2040947.</p

    Molecular Characterisation of Colour Formation in the Prawn <em>Fenneropenaeus merguiensis</em>

    Get PDF
    <div><p>Introduction</p><p>Body colouration in animals can have a range of functions, with predator protection an important aspect of colour in crustaceans. Colour determination is associated with the carotenoid astaxanthin, which is taken up through the diet and stabilised in the tissues by the protein crustacyanin. As a variety of genes are found to play a role in colour formation in other systems, a holistic approach was employed in this study to determine the factors involved in <i>Fenneropenaeus merguiensis</i> colouration.</p> <p>Results</p><p>Full length <i>F. merguiensis</i> crustacyanin subunit A and C sequences were isolated. Crustacyanin subunit A and C were found in the <i>F. merguiensis</i> transcriptomes of the muscle/cuticle tissue, hepatopancreas, eye stalk and nervous system, using 454 next generation sequencing technology. Custom microarray analysis of albino, light and dark <i>F. merguiensis</i> cuticle tissue showed genes encoding actin, sarcoplasmic calcium-binding protein and arginine kinase to be 4-fold or greater differentially expressed (<i>p</i><0.05) and down-regulated in albinos when compared to light and dark samples. QPCR expression analysis of crustacyanin and total astaxanthin pigment extraction revealed significantly (<i>p</i><0.05) lower crustacyanin subunit A and C gene transcript copy numbers and total astaxanthin levels in albinos than in the light and dark samples. Additionally, crustacyanin subunit A and C expression levels correlated positively with each other.</p> <p>Conclusions</p><p>This study identified gene products putatively involved in crustacean colouration, such as crustacyanin, sarcoplasmic calcium-binding protein and forms of actin, and investigated differences in gene expression and astaxanthin levels between albino, light and dark coloured prawns. These genes open a path to enhance our understanding of the biology and regulation of colour formation.</p> </div

    Efficacy of Selected Live Biotherapeutic Candidates to Inhibit the Interaction of an Adhesive-Invasive Escherichia coli Strain with Caco-2, HT29-MTX Cells and Their Co-Culture

    No full text
    Adherent-invasive Escherichia coli (AIEC) has been implicated as a microbiological factor in the pathogenesis of inflammatory bowel disease (IBD). We evaluated the ability of six live biotherapeutic products (LBPs) to inhibit the interaction of an AIEC strain to three cell lines representing human gut epithelium. Co-inoculation of LBPs with AIEC showed a reduction in adhesion (up to 73%) and invasion of AIEC (up to 89%). Pre-inoculation of LBPs in HT-29-MTX and Caco-2 cells before challenging with AIEC further reduced the adhesion and invasion of the AIEC, with three LBPs showing significantly (p < 0.0001) higher efficiency in reducing the adhesion of AIEC. In co-inoculation experiments, the highest reduction in adhesion (73%) of AIEC was observed in HT-29-MTX cells, whereas the highest reduction in invasion (89%) was seen in HT-29-MTX and the co-culture of cells. Pre-inoculation of LBPs further reduced the invasion of AIEC with highest reduction (97%) observed in co-culture of cells. Our results indicated that whilst there were differences in the efficacy of LBPs, they all reduced interaction of AIEC with cell lines representing gut epithelium. Their efficiency was higher when they were pre-inoculated onto the cells, suggesting their potential as candidates for alleviating pathogenesis of AIEC in patients with IBD.</p
    corecore