1,302 research outputs found

    QCD Radiative Correction to the Hadronic Annihilation Rate of 1+1^{+-} Heavy Quarkonium

    Get PDF
    Hadronic annihilation rate of 1+1^{+-} heavy quarkonium is given to next-to-leading order in αs\alpha_s and leading order in v2v^2 using a recently developed factorization formalism which is based on NRQCD. The result includes both the annihilation of P-wave color-singlet QQˉQ\bar{Q} component, and the annihilation of S-wave color-octet QQˉQ\bar{Q} component of the quarkonium. The notorious infrared divergences due to soft gluons, i.e., the Logarithms associated with the binding energy, encountered in previous perturbative calculations of 1+1^{+-} quarkonium decays are found to be explicitly cancelled, and a finite result for the decay width to order αs3\alpha_s^3 is then obtained.Comment: 15 pages latex (6 figures included). In this revised version a update reference and acknowledgement are include

    Relativistic Correction to J/\psi Production at Hadron Colliders

    Full text link
    Relativistic corrections to the color-singlet J/\psi hadroproduction at the Tevatron and LHC are calculated up to O(v^2) in nonrelativistic QCD (NRQCD). The short distance coefficients are obtained by matching full QCD with NRQCD results for the subprocess g+g\to J/\psi+g. The long distance matrix elements are extracted from observed J/\psi hadronic and leptonic decay widths up to O}(v^2). Using the CTEQ6 parton distribution functions, we calculate the LO production cross sections and relativistic corrections for the process p+\bar{p}(p)\to J/\psi+X at the Tevatron and LHC. We find that the enhancement of O(v^2) relativistic corrections to the cross sections over a wide range of large transverse momentum p_t is negligible, only at a level of about 1 %. This tiny effect is due to the smallness of the correction to short distance coefficients and the suppression from long distance matrix elements. These results indicate that relativistic corrections can not help to resolve the large discrepancy between leading order prediction and experimental data for J/\psi production at the Tevatron.Comment: 9 pages, 5 figure

    Cancellation of Infrared Divergences in Hadronic Annihilation Decays of Heavy Quarkonia

    Full text link
    In the framework of a newly developed factorization formalism which is based on NRQCD, explicit cancellations are shown for the infrared divergences that appeared in the previously calculated hadronic annihilation decay rates of P-wave and D-wave heavy quarkonia. We extend them to a more general case that to leading order in v2v^2 and next-to-leading order in αs\alpha_s, the infrared divergences in the annihilation amplitudes of color-singlet QQˉ(2S+1LJ)Q\bar{Q}(^{2S+1}L_J) pair can be removed by including the contributions of color-octet operators QQˉ(2S+1(L1)J)Q\bar{Q}(^{2S+1}(L-1)_{J'}), QQˉ(2S+1(L3)J)Q\bar{Q}(^{2S+1}(L-3)_{J''}), ... in NRQCD. We also give the decay widths of 3DJLH^3D_J\rightarrow LH at leading order in αs\alpha_s.Comment: 8 pages, LaTex(3 figures included), to be publishe

    Reshaping of Truncated Pd Nanocubes: Energetic and Kinetic Analysis Integrating Transmission Electron Microscopy with Atomistic-Level and Coarse-Grained Modeling

    Get PDF
    Stability against reshaping of metallic fcc nanocrystals synthesized with tailored far-from-equilibrium shapes is key to maintaining optimal properties for applications such as catalysis. Yet Arrhenius analysis of experimental reshaping kinetics, and appropriate theory and simulation, is lacking. Thus, we use TEM to monitor the reshaping of Pd nanocubes of ∼25 nm side length between 410 °C (over ∼4.5 h) and 440 °C (over ∼0.25 h), extracting a high effective energy barrier of Eeff ≈ 4.6 eV. We also provide an analytic determination of the energy variation along the optimal pathway for reshaping that involves transfer of atoms across the nanocube surface from edges or corners to form new layers on side {100} facets. The effective barrier from this analysis is shown to increase strongly with the degree of truncation of edges and corners in the synthesized nanocube. Theory matches experiment for the appropriate degree of truncation. In addition, we perform simulations of a stochastic atomistic-level model incorporating a realistic description of diffusive hopping for undercoordinated surface atoms, thereby providing a visualization of the initial reshaping process

    The Grism Lens-Amplified Survey from Space (GLASS). IX. The dual origin of low-mass cluster galaxies as revealed by new structural analyses

    Get PDF
    Using deep Hubble Frontier Fields imaging and slitless spectroscopy from the Grism Lens-Amplified Survey from Space, we analyze 2200 cluster and 1748 field galaxies at 0.2z0.70.2\leq z\leq0.7 to determine the impact of environment on galaxy size and structure at logM/M>7.8\log M_*/M_\odot>7.8, an unprecedented limit at these redshifts. Based on simple assumptions-re=f(M)r_e=f(M_*)-we find no significant differences in half-light radii (rer_e) between equal-mass cluster or field systems. More complex analyses-re=f(M,UV,n,z,Σr_e=f(M_*,U-V,n,z,\Sigma)-reveal local density (Σ(\Sigma) to induce only a 7%±3%7\% \pm 3\% (95%95\% confidence) reduction in rer_e beyond what can be accounted for by UVU-V color, Sersic index (nn), and redshift (zz) effects.Almost any size difference between galaxies in high- and low-density regions is thus attributable to their different distributions in properties other than environment. Indeed, we find a clear color-rer_e correlation in low-mass passive cluster galaxies (logM/M<9.8\log M_*/M_\odot<9.8) such that bluer systems have larger radii, with the bluest having sizes consistent with equal-mass star-forming galaxies. We take this as evidence that large-rer_e low-mass passive cluster galaxies are recently acquired systems that have been environmentally quenched without significant structural transformation (e.g., by ram pressure stripping or starvation).Conversely, 20%\sim20\% of small-rer_e low-mass passive cluster galaxies appear to have been in place since z3z\sim3. Given the consistency of the small-rer_e galaxies' stellar surface densities (and even colors) with those of systems more than ten times as massive, our findings suggest that clusters mark places where galaxy evolution is accelerated for an ancient base population spanning most masses, with late-time additions quenched by environment-specific mechanisms are mainly restricted to the lowest masses.Comment: The accepted version. The catalog is available through the GLASS web page (http://glass.astro.ucla.edu), or https://www.astr.tohoku.ac.jp/~mtakahiro/Publication/Morishita17

    H0LiCOW III. Quantifying the effect of mass along the line of sight to the gravitational lens HE 0435-1223 through weighted galaxy counts

    Get PDF
    Based on spectroscopy and multiband wide-field observations of the gravitationally lensed quasar HE 0435-1223, we determine the probability distribution function of the external convergence κext\kappa_\mathrm{ext} for this system. We measure the under/overdensity of the line of sight towards the lens system and compare it to the average line of sight throughout the universe, determined by using the CFHTLenS as a control field. Aiming to constrain κext\kappa_\mathrm{ext} as tightly as possible, we determine under/overdensities using various combinations of relevant informative weighing schemes for the galaxy counts, such as projected distance to the lens, redshift, and stellar mass. We then convert the measured under/overdensities into a κext\kappa_\mathrm{ext} distribution, using ray-tracing through the Millennium Simulation. We explore several limiting magnitudes and apertures, and account for systematic and statistical uncertainties relevant to the quality of the observational data, which we further test through simulations. Our most robust estimate of κext\kappa_\mathrm{ext} has a median value κextmed=0.004\kappa^\mathrm{med}_\mathrm{ext} = 0.004 and a standard deviation of σκ=0.025\sigma_\kappa = 0.025. The measured σκ\sigma_\kappa corresponds to 2.5%2.5\% uncertainty on the time delay distance, and hence the Hubble constant H0H_0 inference from this system. The median κextmed\kappa^\mathrm{med}_\mathrm{ext} value is robust to 0.005\sim0.005 (i.e. 0.5%\sim0.5\% on H0H_0) regardless of the adopted aperture radius, limiting magnitude and weighting scheme, as long as the latter incorporates galaxy number counts, the projected distance to the main lens, and a prior on the external shear obtained from mass modeling. The availability of a well-constrained κext\kappa_\mathrm{ext} makes \hequad\ a valuable system for measuring cosmological parameters using strong gravitational lens time delays.Comment: 24 pages, 17 figures, 6 tables. Submitted to MNRA

    HST Grism Observations of a Gravitationally Lensed Redshift 10 Galaxy

    Get PDF
    We present deep spectroscopic observations of a Lyman-break galaxy candidate (hereafter MACS1149-JD) at z9.5z\sim9.5 with the Hubble\textit{Hubble} Space Telescope (HST\textit{HST}) WFC3/IR grisms. The grism observations were taken at 4 distinct position angles, totaling 34 orbits with the G141 grism, although only 19 of the orbits are relatively uncontaminated along the trace of MACS1149-JD. We fit a 3-parameter (zz, F160W mag, and Lyα\alpha equivalent width) Lyman-break galaxy template to the three least contaminated grism position angles using an MCMC approach. The grism data alone are best fit with a redshift of zgrism=9.530.60+0.39z_{\mathrm{grism}}=9.53^{+0.39}_{-0.60} (68%68\% confidence), in good agreement with our photometric estimate of zphot=9.510.12+0.06z_{\mathrm{phot}}=9.51^{+0.06}_{-0.12} (68%68\% confidence). Our analysis rules out Lyman-alpha emission from MACS1149-JD above a 3σ3\sigma equivalent width of 21 \AA{}, consistent with a highly neutral IGM. We explore a scenario where the red Spitzer\textit{Spitzer}/IRAC [3.6][4.5][3.6] - [4.5] color of the galaxy previously pointed out in the literature is due to strong rest-frame optical emission lines from a very young stellar population rather than a 4000 \AA{} break. We find that while this can provide an explanation for the observed IRAC color, it requires a lower redshift (z9.1z\lesssim9.1), which is less preferred by the HST\textit{HST} imaging data. The grism data are consistent with both scenarios, indicating that the red IRAC color can still be explained by a 4000 \AA{} break, characteristic of a relatively evolved stellar population. In this interpretation, the photometry indicate that a 34035+29340^{+29}_{-35} Myr stellar population is already present in this galaxy only 500 Myr\sim500~\mathrm{Myr} after the Big Bang.Comment: Accepted to ApJ. This is the accepted versio
    corecore