217 research outputs found

    Glycogen synthase kinase 3α and 3β have distinct functions during cardiogenesis of zebrafish embryo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glycogen synthase kinase 3 (GSK3) encodes a serine/threonine protein kinase, is known to play roles in many biological processes. Two closely related GSK3 isoforms encoded by distinct genes: GSK3α (51 kDa) and GSK3β (47 kDa). In previously studies, most GSK3 inhibitors are not only inhibiting GSK3, but are also affecting many other kinases. In addition, because of highly similarity in amino acid sequence between GSK3α and GSK3β, making it difficult to identify an inhibitor that can be selective against GSK3α or GSK3β. Thus, it is relatively difficult to address the functions of GSK3 isoforms during embryogenesis. At this study, we attempt to specifically inhibit either GSK3α or GSK3β and uncover the isoform-specific roles that GSK3 plays during cardiogenesis.</p> <p>Results</p> <p>We blocked <it>gsk3α </it>and <it>gsk3β </it>translations by injection of morpholino antisense oligonucleotides (MO). Both <it>gsk3α</it>- and <it>gsk3β</it>-MO-injected embryos displayed similar morphological defects, with a thin, string-like shaped heart and pericardial edema at 72 hours post-fertilization. However, when detailed analysis of the <it>gsk3α</it>- and <it>gsk3β</it>-MO-induced heart defects, we found that the reduced number of cardiomyocytes in <it>gsk3α </it>morphants during the heart-ring stage was due to apoptosis. On the contrary, <it>gsk3β </it>morphants did not exhibit significant apoptosis in the cardiomyocytes, and the heart developed normally during the heart-ring stage. Later, however, the heart positioning was severely disrupted in <it>gsk3β </it>morphants. <it>bmp4 </it>expression in <it>gsk3β </it>morphants was up-regulated and disrupted the asymmetry pattern in the heart. The cardiac valve defects in <it>gsk3β </it>morphants were similar to those observed in <it>axin1 </it>and <it>apc</it><sup><it>mcr </it></sup>mutants, suggesting that GSK3β might play a role in cardiac valve development through the Wnt/β-catenin pathway. Finally, the phenotypes of <it>gsk3α </it>mutant embryos cannot be rescued by <it>gsk3β </it>mRNA, and vice versa, demonstrating that GSK3α and GSK3β are not functionally redundant.</p> <p>Conclusion</p> <p>We conclude that (1) GSK3α, but not GSK3β, is necessary in cardiomyocyte survival; (2) the GSK3β plays important roles in modulating the left-right asymmetry and affecting heart positioning; and (3) GSK3α and GSK3β play distinct roles during zebrafish cardiogenesis.</p

    Liposome-based polymer complex as a novel adjuvant: enhancement of specific antibody production and isotype switch

    Get PDF
    The aim of vaccination is to induce appropriate immunity against pathogens. Antibody-mediated immunity is critical for protection against many virus diseases, although it is becoming more evident that coordinated, multifunctional immune responses lead to the most effective defense. Specific antibody (Ab) isotypes are more efficient at protecting against pathogen invasion in different locations in the body. For example, compared to other Ab isotypes, immunoglobulin (Ig) A provides more protection at mucosal areas. In this study, we developed a cationic lipopolymer (liposome-polyethylene glycol-polyethyleneimine complex [LPPC]) adjuvant that strongly adsorbs antigens or immunomodulators onto its surface to enhance or switch immune responses. The results demonstrate that LPPC enhances uptake ability, surface marker expression, proinflammatory cytokine release, and antigen presentation in mouse phagocytes. In contrast to Freund’s adjuvant, LPPC preferentially activates Th1- immunity against antigens in vivo. With lipopolysaccharides or CpG oligodeoxynucleotides, LPPC dramatically enhances the IgA or IgG2A proportion of total Ig, even in hosts that have developed Th2 immunities and high IgG1 serum titers. Taken together, the results demonstrate that the LPPC adjuvant not only increases the immunogenicity of antigens but also modulates host immunity to produce an appropriate Ab isotype by combining with immunomodulators

    Role of pirenoxine in the effects of catalin on in vitro ultraviolet-induced lens protein turbidity and selenite-induced cataractogenesis in vivo

    Get PDF
    Purpose: In this study, we investigated the biochemical pharmacology of pirenoxine (PRX) and catalin under in vitro selenite/calcium- and ultraviolet (UV)-induced lens protein turbidity challenges. The systemic effects of catalin were determined using a selenite-induced cataractogenesis rat model. Methods: In vitro cataractogenesis assay systems (including UVB/C photo-oxidation of lens crystallins, calpain-induced proteolysis, and selenite/calcium-induced turbidity of lens crystallin solutions) were used to screen the activity of PRX and catalin eye drop solutions. Turbidity was identified as the optical density measured using spectroscopy at 405 nm. We also determined the in vivo effects of catalin on cataract severity in a selenite-induced cataract rat model. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE) was applied to analyze the integrity of crystallin samples. Results: PRX at 1,000 μM significantly delayed UVC-induced turbidity formation compared to controls after 4 h of UVC exposure (p<0.05), but not in groups incubated with PRX concentrations of <1,000 μM. Results were further confirmed by SDS–PAGE. The absolute γ-crystallin turbidity induced by 4 h of UVC exposure was ameliorated in the presence of catalin equivalent to 1~100 μM PRX in a concentration-dependent manner. Samples with catalin-formulated vehicle only (CataV) and those containing PRX equivalent to 100 μM had a similar protective effect after 4 h of UVC exposure compared to the controls (p<0.05). PRX at 0.03, 0.1, and 0.3 μM significantly delayed 10 mM selenite- and calcium-induced turbidity formation compared to controls on days 0~4 (p<0.05). Catalin (equivalent to 32, 80, and 100 μM PRX) had an initial protective effect against selenite-induced lens protein turbidity on day 1 (p<0.05). Subcutaneous pretreatment with catalin (5 mg/kg) also statistically decreased the mean cataract scores in selenite-induced cataract rats on post-induction day 3 compared to the controls (1.3±0.2 versus 2.4±0.4; p<0.05). However, catalin (equivalent to up to 100 μM PRX) did not inhibit calpain-induced proteolysis activated by calcium, and neither did 100 μM PRX. Conclusions: PRX at micromolar levels ameliorated selenite- and calcium-induced lens protein turbidity but required millimolar levels to protect against UVC irradiation. The observed inhibition of UVC-induced turbidity of lens crystallins by catalin at micromolar concentrations may have been a result of the catalin-formulated vehicle. Transient protection by catalin against selenite-induced turbidity of crystallin solutions in vitro was supported by the ameliorated cataract scores in the early stage of cataractogenesis in vivo by subcutaneously administered catalin. PRX could not inhibit calpain-induced proteolysis activated by calcium or catalin itself, and may be detrimental to crystallins under UVB exposure. Further studies on formulation modifications of catalin and recommended doses of PRX to optimize clinical efficacy by cataract type are warranted

    miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions

    Get PDF
    MicroRNAs (miRNAs) are small non-coding RNA molecules capable of negatively regulating gene expression to control many cellular mechanisms. The miRTarBase database (http://mirtarbase.mbc.nctu.edu.tw/) provides the most current and comprehensive information of experimentally validated miRNA-target interactions. The database was launched in 2010 with data sources for >100 published studies in the identification of miRNA targets, molecular networks of miRNA targets and systems biology, and the current release (2013, version 4) includes significant expansions and enhancements over the initial release (2010, version 1). This article reports the current status of and recent improvements to the database, including (i) a 14-fold increase to miRNA-target interaction entries, (ii) a miRNA-target network, (iii) expression profile of miRNA and its target gene, (iv) miRNA target-associated diseases and (v) additional utilities including an upgrade reminder and an error reporting/user feedback system

    A New Microsphere-Based Immunoassay for Measuring the Activity of Transcription Factors

    Get PDF
    There are several traditional and well-developed methods for analyzing the activity of transcription factors, such as EMSA, enzyme-linked immunosorbent assay, and reporter gene activity assays. All of these methods have their own distinct disadvantages, but none can analyze the changes in transcription factors in the few cells that are cultured in the wells of 96-well titer plates. Thus, a new microsphere-based immunoassay to measure the activity of transcription factors (MIA-TF) was developed. In MIA-TF, NeutrAvidin-labeled microspheres were used as the solid phase to capture biotin-labeled double-strand DNA fragments which contain certain transcription factor binding elements. The activity of transcription factors was detected by immunoassay using a transcription factor-specific antibody to monitor the binding with the DNA probe. Next, analysis was performed by flow cytometry. The targets hypoxia-inducible factor-1α (HIF-1α) and nuclear factor-kappa B (NF-κB) were applied and detected in this MIA-TF method; the results that we obtained demonstrated that this method could be used to monitor the changes of NF-κB or HIF within 50 or 100 ng of nuclear extract. Furthermore, MIA-TF could detect the changes in NF-κB or HIF in cells that were cultured in wells of a 96-well plate without purification of the nuclear protein, an important consideration for applying this method to high-throughput assays in the future. The development of MIA-TF would support further progress in clinical analysis and drug screening systems. Overall, MIA-TF is a method with high potential to detect the activity of transcription factors

    Utilization of IκB–EGFP Chimeric Gene as an Indicator to Identify Microbial Metabolites with NF-κB Inhibitor Activity

    Get PDF
    NF-κB regulates several important expressions, such as cytokine release, anti-apoptosis, adhesion molecule expression, and cell cycle processing. Several NF-κB inhibitors have been discovered as an anti-tumor or anti-inflammatory drug. The activity of NF-κB transcription factor is negatively regulated by IκB binding. In this study, IκB assay system was established and IκB–EGFP fusion protein was used as an indicator to monitor the effects of substances on the IκB degradation. The results indicated that the chosen hydroquinone could inhibit the IκB degradation and cause the cell de-attachment from the bottom of culture plate. In addition, this system could also monitor the IκB degradation of microbial metabolite of natural mixtures of propolis. Thus, the IκB assay system may be a good system for drug discovery related to microbial metabolite

    Look, the World is Watching How We Treat Migrants! The Making of the Anti-Trafficking Legislation during the Ma Administration

    Get PDF
    Employing the spiral model, this research analyses how anti-human trafficking legislation was promulgated during the Ma Ying-jeou (Ma Yingjiu) presidency. This research found that the gov- ernment of Taiwan was just as accountable for the violation of mi- grants’ human rights as the exploitive placement agencies and abusive employers. This research argues that, given its reliance on the United States for political and security support, Taiwan has made great ef- forts to improve its human rights records and meet US standards for protecting human rights. The reform was a result of multilevel inputs, including US pressure and collaboration between transnational and domestic advocacy groups. A major contribution of this research is to challenge the belief that human rights protection is intrinsic to dem- ocracy. In the same light, this research also cautions against Taiwan’s subscription to US norms since the reform was achieved at the cost of stereotyping trafficking victimhood, legitimising state surveillance, and further marginalising sex workers
    corecore