8 research outputs found

    Robotic Table Tennis: A Case Study into a High Speed Learning System

    Full text link
    We present a deep-dive into a real-world robotic learning system that, in previous work, was shown to be capable of hundreds of table tennis rallies with a human and has the ability to precisely return the ball to desired targets. This system puts together a highly optimized perception subsystem, a high-speed low-latency robot controller, a simulation paradigm that can prevent damage in the real world and also train policies for zero-shot transfer, and automated real world environment resets that enable autonomous training and evaluation on physical robots. We complement a complete system description, including numerous design decisions that are typically not widely disseminated, with a collection of studies that clarify the importance of mitigating various sources of latency, accounting for training and deployment distribution shifts, robustness of the perception system, sensitivity to policy hyper-parameters, and choice of action space. A video demonstrating the components of the system and details of experimental results can be found at https://youtu.be/uFcnWjB42I0.Comment: Published and presented at Robotics: Science and Systems (RSS2023

    OG-SLAM: a real-time and high-accurate monocular visual SLAM framework

    Get PDF
    The challenge of improving the accuracy of monocular Simultaneous Localization and Mapping (SLAM) is considered, which widely appears in computer vision, autonomous robotics, and remote sensing. A new framework (ORB-GMS-SLAM (or OG-SLAM)) is proposed, which introduces the region-based motion smoothness into a typical Visual SLAM (V-SLAM) system. The region-based motion smoothness is implemented by integrating the Oriented Fast and Rotated Brief (ORB) features and the Grid-based Motion Statistics (GMS) algorithm into the feature matching process. The OG-SLAM significantly reduces the absolute trajectory error (ATE) on the key-frame trajectory estimation without compromising the real-time performance. This study compares the proposed G-SLAM to an advanced V-SLAM system (ORB-SLAM2). The results indicate the highest accuracy improvement of almost 75% on a typical RGB-D SLAM benchmark. Compared with other ORB-SLAM2 settings (1800 key points), the OG-SLAM improves the accuracy by around 20% without losing performance in real-time. The OG-SLAM framework has a significant advantage over the ORB-SLAM2 system in that it is more robust for rotation, loop-free, and long ground-truth length scenarios. Furthermore, as far as the authors are aware, this framework is the first attempt to integrate the GMS algorithm into the V-SLAM

    Charge ordering melting and evidence for a metastable antiferromagnetic phase in

    No full text
    The magnetic properties and stability in \chem{Nd_{0.5(1 - {\it x})}Ca_{0.5(1 + {\it x})}Mn_{1 - {\it x}}Ti_{\it x}O_{3}} (0.0≤x≤0.100.0\le x\le 0.10) polycrystalline manganites have been studied. We find that the Ti-dopant causes the melting of the charge ordering state and the presence of the short-range antiferromagnetic phase. The electron-spin resonance spectra and M(H)M(H) hysteresis loops reveal that the antiferromagnetic coupling is weakened rather than strengthened upon temperature decreases. The short-range antiferromagnetic phase is metastable and transforms into the stable ferromagnetic state

    Inversion of Rough Surface Parameters From SAR Images Using Simulation-Trained Convolutional Neural Networks

    No full text

    Intervening Effects and Molecular Mechanism of Quercitrin on PCV2-Induced Histone Acetylation, Oxidative Stress and Inflammatory Response in 3D4/2 Cells

    No full text
    Porcine circovirus type 2 (PCV2) is the main pathogen causing porcine circovirus-associated diseases (PCVD/PCVADs), and infection of the host induces immunosuppression. Since quercitrin (QUE) has anti-inflammatory and antiviral activity, it is worth exploiting in animal diseases. In this study, the interventional effects and the molecular mechanism of QUE on PCV2-induced oxidative stress and inflammatory responses in 3D4/2 cells and the modulation of histone acetylation modifications were investigated. The ROS production was measured by DCFH-DA fluorescent probes. HAT and HDAC enzyme activity were determined by ELISA. Histone acetylation, oxidative stress and inflammation-related gene expression levels were measured by q-PCR. Histone H3 and H4 (AcH3 and AcH4) acetylation, oxidative stress and inflammation-related protein expression levels were measured by Western blot. The results showed that QUE treatment at different concentrations on PCV2-infected 3D4/2 cells was able to attenuate the production of ROS. Moreover, QUE treatment could also intervene in oxidative stress and decrease the enzyme activity of HAT and the mRNA expression level of HAT1, while it increased the enzyme activity of HDAC and HDAC1 mRNA expression levels and downregulated histone H3 and H4 (AcH3 and AcH4) acetylation modification levels. In addition, QUE treatment even downregulated the mRNA expression levels of IL-6, IL-8, IκB, AKT and p38, but upregulated the mRNA expression levels of IL-10, SOD, GPx1, p65, Keap1, Nrf2, HO-1 and NQO1. As to protein expression, QUE treatment downregulated the levels of iNOS, p-p65 and IL-8 as well as the phosphorylation expression of IκB and p38, while it upregulated the levels of HO-1 and NQO1. It was shown that QUE at 25, 50 or 100 μmol/L regulated p38MAPK and PI3K/AKT signaling pathways by downregulating cellular histone acetylation modification levels while inhibiting the NF-κB inflammatory signaling pathway and activating the Nrf2/HO-1 antioxidant signaling pathway, thus regulating the production of inflammatory and antioxidant factors and exerting both anti-inflammatory and antioxidant effects
    corecore