67 research outputs found

    Reexamining Ownership Structure, ESG Engagements, and Corporate Financial Performance : The Nonlinear Relationship in Japan

    Full text link
    This study examines the nonlinear effects of ownership structures on environmental, social, and governance (ESG) performance in Japan and investigates the nonlinear relationship between ESG and corporate financial performance. The results suggest an inverted U-shaped relationship between foreign ownership and ESG performance and a U-shaped relationship between managerial ownership and ESG performance. However, the effect of institutional ownership on ESG is positive and linear. The results of the ESG pillars indicate that the above foreign ownership-ESG link is significant only in the social and environmental pillars, while the above managerial ownership-ESG link is significant in the social, governance, and environmental pillars. Further evidence indicates that ESG links to corporate financial performance through an inverted U-shaped pattern, and such relationships mainly result from the social pillar and governance pillar when the dependent variables are firm values (e.g., Tobin’s Q) and profitability (e.g., operating income on assets and return on equity), respectively. These findings contribute to the understanding of the relationships between ownership structures and firms’ ESG performance as well as the effects of ESG on financial performance in the Japanese capital market.論

    Giant magneto-birefringence effect and tuneable colouration of 2D crystals' suspensions

    Full text link
    One of the long sought-after goals in manipulation of light through light-matter interactions is the realization of magnetic-field-tuneable colouration, so-called magneto-chromatic effect, which holds great promise for optical, biochemical and medical applications due to its contactless and non-invasive nature. This goal can be achieved by magnetic-field controlled birefringence, where colours are produced by the interference between phase-retarded components of transmitted polarised light. Thus far birefringence-tuneable coloration has been demonstrated using electric field, material chirality and mechanical strain but magnetic field control remained elusive due to either weak magneto-optical response of transparent media or low transmittance to visible light of magnetically responsive media, such as ferrofluids. Here we demonstrate magnetically tuneable colouration of aqueous suspensions of two-dimensional cobalt-doped titanium oxide which exhibit an anomalously large magneto-birefringence effect. The colour of the suspensions can be tuned over more than two wavelength cycles in the visible range by moderate magnetic fields below 0.8 T. We show that such giant magneto-chromatic response is due to particularly large phase retardation (>3 pi) of the polarised light, which in its turn is a combined result of a large Cotton-Mouton coefficient (three orders of magnitude larger than for known liquid crystals), relatively high saturation birefringence (delta n = 2 x 10^-4) and high transparency of our suspensions to visible light. The work opens a new avenue to achieve tuneable colouration through engineered magnetic birefringence and can readily be extended to other magnetic 2D nanocrystals. The demonstrated effect can be used in a variety of magneto-optical applications, including magnetic field sensors, wavelength-tuneable optical filters and see-through printing.Comment: 10 pages, 4 figures. Nature Communications, 2020, Accepte

    Turning a native or corroded Mg alloy surface into an anti-corrosion coating in excited CO2

    Get PDF
    Despite their energy-efficient merits as promising light-weight structural materials, magnesium (Mg) based alloys suffer from inadequate corrosion resistance. One primary reason is that the native surface film on Mg formed in air mainly consists of Mg(OH)2 and MgO, which is porous and unprotective, especially in humid environments. Here, we demonstrate an environmentally benign method to grow a protective film on the surface of Mg/Mg alloy samples at room temperature, via a direct reaction of already-existing surface film with excited CO2. Moreover, for samples that have been corroded obviously on surface, the corrosion products can be converted directly to create a new protective surface. Mechanical tests show that compared with untreated samples, the protective layer can elevate the yield stress, suppress plastic instability and prolong compressive strains without peeling off from the metal surface. This environmentally friendly surface treatment method is promising to protect Mg alloys, including those already-corroded on the surface.China. Ministry of Science and Technology. National Key Research and Development Program (No. 2017YFB0702001)National Natural Science Foundation of China (51621063)National Natural Science Foundation of China (51601141)National Natural Science Foundation of China ( 51401239)Shaanxi Sheng (China). Science and Technology Department (2016KTZDGY-04-03)Shaanxi Sheng (China). Science and Technology Department (2016KTZDGY-04-04)China Postdoctoral Science Foundation (2016M600788)China University of Petroleum. Science Foundation (No. 2462018BJC005)China University of Petroleum. Science Foundation (C201603)National Science Foundation (U.S.) (ECCS-1610806

    A Basic Research on Management Compensation Based on ESG Indicators : Analyses Based on Information Disclosed in Securities Reports

    Get PDF
    本研究は、JSPS科研費JP20K02028の助成を受けたものである

    Giant magneto-birefringence effect and tuneable colouration of 2D crystal suspensions

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2020-02-13, accepted 2020-07-03, registration 2020-07-10, pub-electronic 2020-07-24, online 2020-07-24, collection 2020-12Publication status: PublishedAbstract: One of the long-sought-after goals in light manipulation is tuning of transmitted interference colours. Previous approaches toward this goal include material chirality, strain and electric-field controls. Alternatively, colour control by magnetic field offers contactless, non-invasive and energy-free advantages but has remained elusive due to feeble magneto-birefringence in conventional transparent media. Here we demonstrate an anomalously large magneto-birefringence effect in transparent suspensions of magnetic two-dimensional crystals, which arises from a combination of a large Cotton-Mouton coefficient and relatively high magnetic saturation birefringence. The effect is orders of magnitude stronger than those previously demonstrated for transparent materials. The transmitted colours of the suspension can be continuously tuned over two-wavelength cycles by moderate magnetic fields below 0.8 T. The work opens a new avenue to tune transmitted colours, and can be further extended to other systems with artificially engineered magnetic birefringence

    Magnetization Signature of Topological Surface States in a Non-Symmorphic Superconductor

    Full text link
    Superconductors with nontrivial band structure topology represent a class of materials with unconventional and potentially useful properties. Recent years have seen much success in creating artificial hybrid structures exhibiting the main characteristics of 2D topological superconductors. Yet, bulk materials known to combine inherent superconductivity with nontrivial topology remain scarce, largely because distinguishing their central characteristic—the topological surface states—has proved challenging due to a dominant contribution from the superconducting bulk. In this work, a highly anomalous behavior of surface superconductivity in topologically nontrivial 3D superconductor In2Bi, where the surface states result from its nontrivial band structure, itself a consequence of the non-symmorphic crystal symmetry and strong spin–orbit coupling, is reported. In contrast to smoothly decreasing diamagnetic susceptibility above the bulk critical field, Hc2, as seen in conventional superconductors, a near-perfect, Meissner-like screening of low-frequency magnetic fields well above Hc2 is observed. The enhanced diamagnetism disappears at a new phase transition close to the critical field of surface superconductivity, Hc3. Using theoretical modeling, the anomalous screening is shown to be consistent with modification of surface superconductivity by the topological surface states. The possibility of detecting signatures of the surface states using macroscopic magnetization provides a new tool for the discovery and identification of topological superconductor

    Magnetization Signature of Topological Surface States in a Non-Symmorphic Superconductor

    Full text link
    Superconductors with nontrivial band structure topology represent a class of materials with unconventional and potentially useful properties. Recent years have seen much success in creating artificial hybrid structures exhibiting the main characteristics of 2D topological superconductors. Yet, bulk materials known to combine inherent superconductivity with nontrivial topology remain scarce, largely because distinguishing their central characteristic—the topological surface states—has proved challenging due to a dominant contribution from the superconducting bulk. In this work, a highly anomalous behavior of surface superconductivity in topologically nontrivial 3D superconductor In2Bi, where the surface states result from its nontrivial band structure, itself a consequence of the non-symmorphic crystal symmetry and strong spin–orbit coupling, is reported. In contrast to smoothly decreasing diamagnetic susceptibility above the bulk critical field, Hc2, as seen in conventional superconductors, a near-perfect, Meissner-like screening of low-frequency magnetic fields well above Hc2 is observed. The enhanced diamagnetism disappears at a new phase transition close to the critical field of surface superconductivity, Hc3. Using theoretical modeling, the anomalous screening is shown to be consistent with modification of surface superconductivity by the topological surface states. The possibility of detecting signatures of the surface states using macroscopic magnetization provides a new tool for the discovery and identification of topological superconductor

    Contextualizing the Revised Patient Perception of Patient-Centeredness (Pppc-R) Scale in Primary Healthcare Settings: a Validity and Reliability Evaluation Study

    Get PDF
    BACKGROUND: An English version of the Patient Perception of Patient-Centeredness (PPPC) scale was recently revised, and it is necessary to test this instrument in different primary care populations. AIM: This study aimed to assess the validity and reliability of a Chinese version of the PPPC scale. DESIGN: A mixed method was used in this study. The Delphi method was used to collect qualitative and quantitative data to address the content validity of the PPPC scale by calculating the Content Validity Index, Content Validity Ratio, the adjusted Kappa, and the Item Impact Score. Confirmatory factor analysis (CFA) and exploratory factor analysis (EFA) were used to assess the construct validity of the PPPC scale through a cross-sectional survey. The internal consistency was also assessed. SETTING/PARTICIPANTS: In the Delphi consultation, seven experts were consulted through a questionnaire sent by email. The cross-sectional survey interviewed 188 outpatients in Guangzhou city and 108 outpatients in Hohhot City from community health service centers or stations face-to-face. RESULTS: The 21 items in the scale were relevant to their component. The Item-level Content Validity Index for each item was higher than 0.79, and the average Scale-level content validity index was 0.97 in each evaluation round. The initial proposed 4-factor CFA model did not fit adequately. Still, we found a 3-factor solution based on our EFA model and the validation via the CFA model (model fit: [Formula: see text], P \u3c 0.001, RMSEA = 0.044, CFI = 0.981; factor loadings: 0.553 to 0.888). Cronbach\u27s α also indicated good internal consistency reliability: The overall Cronbach\u27s α was 0.922, and the Cronbach\u27s α for each factor was 0.851, 0.872, and 0.717, respectively. CONCLUSIONS: The Chinese version of the PPPC scale provides a valuable tool for evaluating patient-centered medical service quality
    corecore