3,101 research outputs found

    Effectiveness of influenza vaccination in patients with end-stage renal disease receiving hemodialysis: a population-based study.

    Get PDF
    BackgroundLittle is known on the effectiveness of influenza vaccine in ESRD patients. This study compared the incidence of hospitalization, morbidity, and mortality in end-stage renal disease (ESRD) patients undergoing hemodialysis (HD) between cohorts with and without influenza vaccination.MethodsWe used the insurance claims data from 1998 to 2009 in Taiwan to determine the incidence of these events within one year after influenza vaccination in the vaccine (N = 831) and the non-vaccine (N = 3187) cohorts. The vaccine cohort to the non-vaccine cohort incidence rate ratio and hazard ratio (HR) of morbidities and mortality were measured.ResultsThe age-specific analysis showed that the elderly in the vaccine cohort had lower hospitalization rate (100.8 vs. 133.9 per 100 person-years), contributing to an overall HR of 0.81 (95% confidence interval (CI) 0.72-0.90). The vaccine cohort also had an adjusted HR of 0.85 [95% CI 0.75-0.96] for heart disease. The corresponding incidence of pneumonia and influenza was 22.4 versus 17.2 per 100 person-years, but with an adjusted HR of 0.80 (95% CI 0.64-1.02). The vaccine cohort had lowered risks than the non-vaccine cohort for intensive care unit (ICU) admission (adjusted HR 0.20, 95% CI 0.12-0.33) and mortality (adjusted HR 0.50, 95% CI 0.41-0.60). The time-dependent Cox model revealed an overall adjusted HR for mortality of 0.30 (95% CI 0.26-0.35) after counting vaccination for multi-years.ConclusionsESRD patients with HD receiving the influenza vaccination could have reduced risks of pneumonia/influenza and other morbidities, ICU stay, hospitalization and death, particularly for the elderly

    Fast Post-placement Rewiring Using Easily Detectable Functional Symmetries

    Get PDF
    Timing convergence problem arises when the estimations made during logic synthesis can not be met during physical design. In this paper, an efficient rewiring engine is proposed to explore maximal freedom after placement. The most important feature of this approach is that the existing placement solution is left intact throughout the optimization. A linear time algorithm is proposed to detect functional symmetries in the Boolean network and is used as the basis for rewiring. Integration with an existing gate sizing algorithm further proves the effectiveness of our technique. Experimental results are very promising

    FFTPL: An Analytic Placement Algorithm Using Fast Fourier Transform for Density Equalization

    Full text link
    We propose a flat nonlinear placement algorithm FFTPL using fast Fourier transform for density equalization. The placement instance is modeled as an electrostatic system with the analogy of density cost to the potential energy. A well-defined Poisson's equation is proposed for gradient and cost computation. Our placer outperforms state-of-the-art placers with better solution quality and efficiency

    Distributed Training Large-Scale Deep Architectures

    Full text link
    Scale of data and scale of computation infrastructures together enable the current deep learning renaissance. However, training large-scale deep architectures demands both algorithmic improvement and careful system configuration. In this paper, we focus on employing the system approach to speed up large-scale training. Via lessons learned from our routine benchmarking effort, we first identify bottlenecks and overheads that hinter data parallelism. We then devise guidelines that help practitioners to configure an effective system and fine-tune parameters to achieve desired speedup. Specifically, we develop a procedure for setting minibatch size and choosing computation algorithms. We also derive lemmas for determining the quantity of key components such as the number of GPUs and parameter servers. Experiments and examples show that these guidelines help effectively speed up large-scale deep learning training

    Observation of interlayer phonon modes in van der Waals heterostructures

    Get PDF
    We have investigated the vibrational properties of van der Waals heterostructures of monolayer transition metal dichalcogenides (TMDs), specifically MoS2/WSe2 and MoSe2/MoS2 heterobilayers as well as twisted MoS2 bilayers, by means of ultralow-frequency Raman spectroscopy. We discovered Raman features (at 30 ~ 40 cm-1) that arise from the layer-breathing mode (LBM) vibrations between the two incommensurate TMD monolayers in these structures. The LBM Raman intensity correlates strongly with the suppression of photoluminescence that arises from interlayer charge transfer. The LBM is generated only in bilayer areas with direct layer-layer contact and atomically clean interface. Its frequency also evolves systematically with the relative orientation between of the two layers. Our research demonstrates that LBM can serve as a sensitive probe to the interface environment and interlayer interactions in van der Waals materials

    Spectral properties and magneto-optical excitations in semiconductor double-rings under Rashba spin-orbit interaction

    Full text link
    We have numerically solved the Hamiltonian of an electron in a semiconductor double ring subjected to the magnetic flux and Rashba spin-orbit interaction. It is found that the Aharonov-Bohm energy spectrum reveals multi-zigzag periodic structures. The investigations of spin-dependent electron dynamics via Rabi oscillations in two-level and three-level systems demonstrate the possibility of manipulating quantum states. Our results show that the optimal control of photon-assisted inter-ring transitions can be achieved by employing cascade-type and Λ\Lambda-type transition mechanisms. Under chirped pulse impulsions, a robust and complete transfer of an electron to the final state is shown to coincide with the estimation of the Landau-Zener formula.Comment: RevTex, 9 pages, 5 figure

    Surface scattering mechanisms of tantalum nitride thin film resistor

    Get PDF
    In this letter, we utilize an electrical analysis method to develop a TaN thin film resistor with a stricter spec and near-zero temperature coefficient of resistance (TCR) for car-used electronic applications. Simultaneously, we also propose a physical mechanism mode to explain the origin of near-zero TCR for the TaN thin film resistor (TFR). Through current fitting, the carrier conduction mechanism of the TaN TFR changes from hopping to surface scattering and finally to ohmic conduction for different TaN TFRs with different TaN microstructures. Experimental data of current–voltage measurement under successive increasing temperature confirm the conduction mechanism transition. A model of TaN grain boundary isolation ability is eventually proposed to influence the carrier transport in the TaN thin film resistor, which causes different current conduction mechanisms

    Millisecond dips in the 2007-2009 RXTE/PCA lightcurve of Sco X-1 and one possible occultation event

    Full text link
    Serendipitous stellar occultation search is so far the only way to detect the existence of very small, very dim, remote objects in the solar system. To date, however, there are only very few reported detections for trans-Neptunian objects (TNOs) in optical bands. In the X-ray band, with the RXTE/PCA data of Sco X-1 taken from June 2007 to October 2009, we found one possible X-ray occultation event. We discuss the veracity and properties of this event, and suggest upper limits to the size distribution of TNOs at hectometer size and of Main-Belt Asteroids (MBAs) at decameter size.Comment: 8 pages, 5 figures, to appear in MNRAS (accepted on Sep. 10, 2010
    corecore