18 research outputs found

    Breakdown of chiral recognition of amino acids in reduced dimensions

    Get PDF
    The homochirality of amino acids in living organisms is one of the great mysteries in the phenomena of life. To understand the chiral recognition of amino acids, we have used scanning tunnelling microscopy to investigate the self-assembly of molecules of the amino acid tryptophan (Trp) on Au(111). Earlier experiments showed only homochiral configurations in the self-assembly of amino acids, despite using a mixture of the two opposite enantiomers. In our study, we demonstrate that heterochiral configurations can be favored energetically when l- and d-Trp molecules are mixed to form self-assembly on the Au surface. Using density functional theory calculations, we show that the indole side chain strongly interacts with the Au surface, which reduces the system effectively to two-dimension, with chiral recognition disabled. Our study provides important insight into the recognition of the chirality of amino acid molecules in life. © 2020, The Author(s).1

    Surface energy-mediated construction of anisotropic semiconductor wires with selective crystallographic polarity.

    Get PDF
    ZnO is a wide band-gap semiconductor with piezoelectric properties suitable for opto-electronics, sensors, and as an electrode material. Controlling the shape and crystallography of any semiconducting nanomaterial is a key step towards extending their use in applications. Whilst anisotropic ZnO wires have been routinely fabricated, precise control over the specific surface facets and tailoring of polar and non-polar growth directions still requires significant refinement. Manipulating the surface energy of crystal facets is a generic approach for the rational design and growth of one-dimensional (1D) building blocks. Although the surface energy is one basic factor for governing crystal nucleation and growth of anisotropic 1D structures, structural control based on surface energy minimization has not been yet demonstrated. Here, we report an electronic configuration scheme to rationally modulate surface electrostatic energies for crystallographic-selective growth of ZnO wires. The facets and orientations of ZnO wires are transformed between hexagonal and rectangular/diamond cross-sections with polar and non-polar growth directions, exhibiting different optical and piezoelectrical properties. Our novel synthetic route for ZnO wire fabrication provides new opportunities for future opto-electronics, piezoelectronics, and electronics, with new topological properties

    Heterogeneous stacking of nanodot monolayers by dry pick-and-place transfer and its applications in quantum dot light-emitting diodes

    Get PDF
    Layered assembly structures composed of nanomaterials, such as nanocrystals, have attracted considerable attention as promising candidates for new functional devices whose optical, electromagnetic and electronic behaviours are determined by the spatial arrangement of component elements. However, difficulties in handling each constituent layer in a materialspecific manner limit the 3D integration of disparate nanomaterials into the appropriate heterogeneous electronics. Here we report a pick-and-place transfer method that enables the transfer of large-area nanodot assemblies. This solvent-free transfer utilizes a lifting layer and allows for the reliable transfer of a quantum dot (QD) monolayer, enabling layer-by-layer design. With the controlled multistacking of different bandgap QD layers, we are able to probe the interlayer energy transfer among different QD monolayers. By controlling the emission spectrum through such designed monolayer stacking, we have achieved white emission with stable optoelectronic properties, the closest to pure white among the QD lightemitting diodes reported so far. (c) 2013 Macmillan Publishers Limited. All rights reserved.402

    A Low-loss Metasurface Antireflection Coating on Dispersive Surface Plasmon Structure

    No full text
    Over the years, there has been increasing interest in the integration of metal hole array (MHA) with optoelectronic devices, as a result of enhanced coupling of incident light into the active layer of devices via surface plasmon polariton (SPP) resonances. However, not all incident light contributes to the SPP resonances due to significant reflection loss at the interface between incident medium and MHA. Conventional thin-film antireflection (AR) coating typically does not work well due to non-existing material satisfying the AR condition with strong dispersion of MHA’s effective impedances. We demonstrate a single-layer metasurface AR coating that completely eliminates the refection and significantly increases the transmission at the SPP resonances. Operating at off-resonance wavelengths, the metasurface exhibits extremely low loss and does not show resonant coupling with the MHA layer. The SPP resonance wavelengths of MHA layer are unaffected whereas the surface wave is significantly increased, thereby paving the way for improved performance of optoelectronic devices. With an improved retrieval method, the metasurface is proved to exhibit a high effective permittivity () and extremely low loss (tan δ ~ 0.005). A classical thin-film AR coating mechanism is identified through analytical derivations and numerical simulations

    A Low-loss Metasurface Antireflection Coating on Dispersive Surface Plasmon Structure

    Get PDF
    Over the years, there has been increasing interest in the integration of metal hole array (MHA) with optoelectronic devices, as a result of enhanced coupling of incident light into the active layer of devices via surface plasmon polariton (SPP) resonances. However, not all incident light contributes to the SPP resonances due to significant reflection loss at the interface between incident medium and MHA. Conventional thin-film antireflection (AR) coating typically does not work well due to non-existing material satisfying the AR condition with strong dispersion of MHA’s effective impedances. We demonstrate a single-layer metasurface AR coating that completely eliminates the refection and significantly increases the transmission at the SPP resonances. Operating at off-resonance wavelengths, the metasurface exhibits extremely low loss and does not show resonant coupling with the MHA layer. The SPP resonance wavelengths of MHA layer are unaffected whereas the surface wave is significantly increased, thereby paving the way for improved performance of optoelectronic devices. With an improved retrieval method, the metasurface is proved to exhibit a high effective permittivity () and extremely low loss (tan δ ~ 0.005). A classical thin-film AR coating mechanism is identified through analytical derivations and numerical simulations

    Evolution of Graphene Growth on Pt(111): From Carbon Clusters to Nanoislands

    No full text
    We study the growth of graphene on a Pt(111) surface in stages by varying the annealing temperature of the precursor hydrocarbon decomposition through an atomic-scale analysis using scanning tunneling microscopy (STM) and studying the geometry-affected electronic properties of graphene nanoislands (GNs) through scanning tunneling spectroscopy. STM reveals that graphene grows on a Pt(111) surface from dome-shaped carbon clusters to flat GNs with the intermediate stages of dome-shaped and basin-shaped hexagonal GN structures. Density functional theory calculations confirm the changes in direction of the concavity upon increase in the size of the GNs. The structural changes are also found to have a significant effect on the electronic properties. Landau levels arise from strain-induced pseudomagnetic fields because of the large curvature, and the nanoscale-size effect promotes electron confinement

    Plasmonic-Layered InAs/InGaAs Quantum-Dots-in-a-Well Pixel Detector for Spectral-Shaping and Photocurrent Enhancement

    No full text
    The algorithmic spectrometry as an alternative to traditional approaches has the potential to become the next generation of infrared (IR) spectral sensing technology, which is free of physical optical filters, and only a very small number of data are required from the IR detector. A key requirement is that the detector spectral responses must be engineered to create an optimal basis that efficiently synthesizes spectral information. Light manipulation through metal perforated with a two-dimensional square array of subwavelength holes provides remarkable opportunities to harness the detector response in a way that is incorporated into the detector. Instead of previous experimental efforts mainly focusing on the change over the resonance wavelength by tuning the geometrical parameters of the plasmonic layer, we experimentally and numerically demonstrate the capability for the control over the shape of bias-tunable response spectra using a fixed plasmonic structure as well as the detector sensitivity improvement, which is enabled by the anisotropic dielectric constants of the quantum dots-in-a-well (DWELL) absorber and the presence of electric field along the growth direction. Our work will pave the way for the development of an intelligent IR detector, which is capable of direct viewing of spectral information without utilizing any intervening the spectral filters

    Gut microbiome signatures distinguish type 2 diabetes mellitus from non-alcoholic fatty liver disease

    No full text
    Non-alcoholic fatty liver disease (NAFLD) is closely associated with type 2 diabetes mellitus (T2D), and these two metabolic diseases demonstrate bidirectional influences. The identification of microbiome profiles that are specific to liver injury or impaired glucose metabolism may assist understanding of the role of the gut microbiota in the relationship between NAFLD and T2D. Here, we studied a biopsy-proven Asian NAFLD cohort (n = 329; 187 participants with NAFLD, 101 with NAFLD and T2D, and 41 with neither) and identified Enterobacter, Romboutsia, and Clostridium sensu stricto as the principal taxa associated with the severity of NAFLD and T2D, whereas Ruminococcus and Megamonas were specific to NAFLD. In particular, the taxa that were associated with both severe liver pathology and T2D were also significantly associated with markers of diabetes, such as fasting blood glucose and Hb1Ac. Enterotype analysis demonstrated that participants with NAFLD had a significantly higher proportion of Bacteroides and a lower proportion of Ruminococcus than a Korean healthy twin cohort (n = 756). However, T2D could not be clearly distinguished from NAFLD. Analysis of an independent T2D cohort (n = 185) permitted us to validate the T2D-specific bacterial signature identified in the NAFLD cohort. Functional inference analysis revealed that endotoxin biosynthesis pathways were significantly enriched in participants with NAFLD and T2D, compared with those with NAFLD alone. These findings may assist with the development of effective therapeutic approaches for metabolic diseases that are associated with specific bacterial signatures. (C) 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.Y

    Current Technologies of Electrochemical Immunosensors: Perspective on Signal Amplification

    No full text
    An electrochemical immunosensor employs antibodies as capture and detection means to produce electrical charges for the quantitative analysis of target molecules. This sensor type can be utilized as a miniaturized device for the detection of point-of-care testing (POCT). Achieving high-performance analysis regarding sensitivity has been one of the key issues with developing this type of biosensor system. Many modern nanotechnology efforts allowed for the development of innovative electrochemical biosensors with high sensitivity by employing various nanomaterials that facilitate the electron transfer and carrying capacity of signal tracers in combination with surface modification and bioconjugation techniques. In this review, we introduce novel nanomaterials (e.g., carbon nanotube, graphene, indium tin oxide, nanowire and metallic nanoparticles) in order to construct a high-performance electrode. Also, we describe how to increase the number of signal tracers by employing nanomaterials as carriers and making the polymeric enzyme complex associated with redox cycling for signal amplification. The pros and cons of each method are considered throughout this review. We expect that these reviewed strategies for signal enhancement will be applied to the next versions of lateral-flow paper chromatography and microfluidic immunosensor, which are considered the most practical POCT biosensor platforms

    Magnetic states of atomic vacancies in graphite probed by scanning tunneling microscopy

    No full text
    Intrinsic defects in graphitic materials, like vacancies and edges, have been expected to possess magnetic states from the many-body interaction of localized electrons. However, charge screening from graphite bulk carriers significantly reduces the localization effect and hinders the observation of those magnetic states. Here, we use an ultra-low-temperature scanning tunneling microscope with a high magnetic field to observe the magnetic states of atomic vacancies in graphite generated by ion sputtering. Scanning tunneling spectroscopy reveals localized states at the vacancies, which exhibit splitting at a certain magnetic field whose separation increases with the field strength. The transition is well described by the Anderson model,which describes the emergence of localized magnetic states inside the metallic reservoir through electron-electron interaction. The interaction strength is estimated to be between 1 meV and 3 meV, which is supported by the density functional theory calculation. The observation provides an important foundation for application of intrinsic defects to carbon-based spintronic devices. © 2020 Author(s).1
    corecore