7 research outputs found

    Substantial spatial variation in glacial erosion rates in the Dronning Maud Land Mountains, East Antarctica

    Get PDF
    The coast-parallel Dronning Maud Land (DML) mountains represent a key nucleation site for the protracted glaciation of Antarctica. Their evolution is therefore of special interest for understanding the formation and development of the Antarctic ice sheet. Extensive glacial erosion has clearly altered the landscape over the past 34 Myr. Yet, the total erosion still remains to be properly constrained. Here, we investigate the power of low-temperature thermochronology in quantifying glacial erosion in-situ. Our data document the differential erosion along the DML escarpment, with up to c. 1.5 and 2.4 km of erosion in western and central DML, respectively. Substantial erosion at the escarpment foothills, and limited erosion at high elevations and close to drainage divides, is consistent with an escarpment retreat model. Such differential erosion suggests major alterations of the landscape during 34 Myr of glaciation and should be implemented in future ice sheet models.publishedVersio

    The brittle evolution of Western Norway – A space-time model based on fault mineralizations, K–Ar fault gouge dating and paleostress analysis

    Get PDF
    Basement fracture and fault patterns on passive continental margins control the onshore landscape and offshore distribution of sediment packages and fluid pathways. In this study, we decipher the spatial-temporal evolution of brittle faults and fractures in the northern section of the passive margin of Western Norway by combining field observations of fault mineralizations and K–Ar fault gouge dating with different paleostress approaches, resulting in the following model: (1) High-T fault mineralizations indicate Silurian NW-SE compression followed by NW-SE extension in the Early to Mid-Devonian. (2) Epidote, chlorite and quartz fault mineralizations indicate a dominant strike-slip stress field in the Late Devonian to early Carboniferous. (3) E-W extensional stress fields which could be related to Permo-Triassic or Late Jurassic rifting are not prominent in our data set. (4) K–Ar fault gouge ages indicate two extensive faulting events under a WNW-ESE transtensional stress regime with related precipitation of zeolite and calcite in the mid (123-115 Ma) and late (86-77 Ma) Cretaceous. Our results show that the brittle architecture of the study area is dominated by reactivation of ductile precursors and newly formed strike-slip faults, which is different from the dip-slip dominated brittle architecture of the southern section of the West Norway margin.publishedVersio

    Substantial spatial variation in glacial erosion rates in the Dronning Maud Land Mountains, East Antarctica

    No full text
    The coast-parallel Dronning Maud Land (DML) mountains represent a key nucleation site for the protracted glaciation of Antarctica. Their evolution is therefore of special interest for understanding the formation and development of the Antarctic ice sheet. Extensive glacial erosion has clearly altered the landscape over the past 34 Myr. Yet, the total erosion still remains to be properly constrained. Here, we investigate the power of low-temperature thermochronology in quantifying glacial erosion in-situ. Our data document the differential erosion along the DML escarpment, with up to c. 1.5 and 2.4 km of erosion in western and central DML, respectively. Substantial erosion at the escarpment foothills, and limited erosion at high elevations and close to drainage divides, is consistent with an escarpment retreat model. Such differential erosion suggests major alterations of the landscape during 34 Myr of glaciation and should be implemented in future ice sheet models

    Tectono-thermal evolution and morphodynamics of the central dronning maud land mountains, east antarctica, based on new thermochronological data

    No full text
    The lack of preserved Mesozoic–Cenozoic sediments and structures in central Dronning Maud Land has so far limited our understanding of the post-Pan-African evolution of this important part of East Antarctica. In order to investigate the thermal evolution of the basement rocks and place constraints on landscape evolution, we present new low-temperature thermochronological data from 34 samples. Apatite fission track ages range from 280–85 Ma, while single-grain (U-Th)/He ages from apatite and zircon range from 305–15 and 420–340 Ma, respectively. Our preferred thermal history models suggest late Paleozoic–early Mesozoic peneplanation and subsequent burial by 3–6 km of Beacon sediments. The samples experienced no additional burial in the Jurassic, thus the once voluminous continental flood basalts of western Dronning Maud Land did not reach central Dronning Maud Land. Mesozoic–early Cenozoic cooling of the samples was slow. Contrary to western Dronning Maud Land, central Dronning Maud Land lacks a mid-Cretaceous cooling phase. We therefore suggest that the mid-Cretaceous cooling of western Dronning Maud Land should be attributed to the proximity to the collapse of the orogenic plateau at the Panthalassic margin of Gondwana. Cooling rates accelerated considerably with the onset of glaciation at 34 Ma, due to climate deterioration and glacial denudation of up to 2 km

    Alps to Apennines zircon roller coaster along the Adria microplate margin

    No full text
    We have traced the particle path of high-pressure metasedimentary rocks on Elba Island, Northern Apennines, with the help of a U-Pb-Hf detrital zircon study. One quarter of the analysed zircons are surprisingly young, 41-30 Ma, with a main age peak at ca. 32 Ma, indicating an unexpected early Oligocene maximum deposition age. These Oligocene ages with negative εHf indicate a volcanic source region in the central-southern Alps. Though young by geological means, these zircons record an extraordinary geodynamic history. They originated in a volcanic arc, during the convergence/collision of the the Adria microplate with Europe from ca. 65 to 30 Ma. Thereafter, the Oligocene zircons travelled ca. 400 km southward along the Adria margin and the accretionary prism to present-day Tuscany, where they were subducted to depths of at least 40 km. Shortly thereafter, they were brought to the surface again in the wake of hinge roll back of the Apennine subduction zone and the resulting rapid extensional exhumation. Such a zircon roller coaster requires a microplate that has back-to-back subduction zones with opposing polarities on two sides

    Structural inheritance and rapid rift-length establishment in a multiphase rift: The East Greenland rift system and its Caledonian orogenic ancestry

    Get PDF
    We investigate (i) margin‐scale structural inheritance in rifts and (ii) the time scales of rift propagation and rift length establishment, using the East Greenland rift system (EGR) as an example. To investigate the controls of the underlying Caledonian structural grain on the development of the EGR, we juxtapose new age constraints on rift faulting with existing geochronological and structural evidence. Results from K‐Ar illite fault dating and syn‐rift growth strata in hangingwall basins suggest initial faulting in Mississippian times and episodes of fault activity in Middle‐Late Pennsylvanian, Middle Permian, and Middle Jurassic to Early Cretaceous times. Several lines of evidence indicate a close relationship between low‐angle late‐to‐post‐Caledonian extensional shear zones (CESZs) and younger rift structure: (i) reorientation of rift fault strike to conform with CESZs, (ii) spatial coincidence of rift‐scale transfer zones with CESZs, and (iii) close temporal coincidence between the latest activity (late Devonian) on the preexisting network of CESZs and the earliest rift faulting (latest Devonian to earliest Carboniferous). Late‐ to post‐Caledonian extensional detachments therefore likely acted as a template for the establishment of the EGR. We also conclude that the EGR established its near‐full length rapidly, i.e., within 4–20% of rift life. The “constant‐length model” for normal fault growth may therefore be applicable at rift scale, but tip propagation, relay breaching, and linkage may dominate border fault systems during rapid lengthening

    Structural inheritance and rapid rift-length establishment in a multiphase rift: The East Greenland rift system and its Caledonian orogenic ancestry

    No full text
    We investigate (i) margin‐scale structural inheritance in rifts and (ii) the time scales of rift propagation and rift length establishment, using the East Greenland rift system (EGR) as an example. To investigate the controls of the underlying Caledonian structural grain on the development of the EGR, we juxtapose new age constraints on rift faulting with existing geochronological and structural evidence. Results from K‐Ar illite fault dating and syn‐rift growth strata in hangingwall basins suggest initial faulting in Mississippian times and episodes of fault activity in Middle‐Late Pennsylvanian, Middle Permian, and Middle Jurassic to Early Cretaceous times. Several lines of evidence indicate a close relationship between low‐angle late‐to‐post‐Caledonian extensional shear zones (CESZs) and younger rift structure: (i) reorientation of rift fault strike to conform with CESZs, (ii) spatial coincidence of rift‐scale transfer zones with CESZs, and (iii) close temporal coincidence between the latest activity (late Devonian) on the preexisting network of CESZs and the earliest rift faulting (latest Devonian to earliest Carboniferous). Late‐ to post‐Caledonian extensional detachments therefore likely acted as a template for the establishment of the EGR. We also conclude that the EGR established its near‐full length rapidly, i.e., within 4–20% of rift life. The “constant‐length model” for normal fault growth may therefore be applicable at rift scale, but tip propagation, relay breaching, and linkage may dominate border fault systems during rapid lengthening
    corecore