296 research outputs found

    AN APPROACH FOR FAULT DETECTION AND FAULT MANAGEMENT IN THE WIRELESS SENSOR NETWORK TO EXTEND NETWORK LIFETIME

    Get PDF
    A mobile wireless ad hoc sensor network (MANET) consists of a group of homogeneous or heterogeneous mobile communicating hosts that form an arbitrary network interconnected via by means of several wireless communication media without any fixed infrastructure. In such network the delivery of the data packet from source to destination may fail for various reasons and major due to failure-prone environment of networks. This may happens due to the topology changes, node failure due to battery exhaust, failure of the communication module in the wireless node and results in the link failure. This paper addressed the major problem of link failure in the WSN and with the aim of providing robust solution so as to satisfy the stern end-to-end requirements of QoS-based communication networks. In this paper we modifies existing fully distributed cluster-based routing algorithm by addressing local recovery for the link failure. Performance of this new fault-tolerant fully distributed cluster-based routing algorithm is evaluated by simulating it in NS2 environment and we show that it performs better than the existing algorithm and provide better solution for fault detection and fault management along the QoS paths

    AN APPROACH FOR FAULT DETECTION AND FAULT MANAGEMENT IN THE WIRELESS SENSOR NETWORK TO EXTEND NETWORK LIFETIME

    Get PDF
    A mobile wireless ad hoc sensor network (MANET) consists of a group of homogeneous or heterogeneous mobile communicating hosts that form an arbitrary network interconnected via by means of several wireless communication media without any fixed infrastructure. In such network the delivery of the data packet from source to destination may fail for various reasons and major due to failure-prone environment of networks. This may happens due to the topology changes, node failure due to battery exhaust, failure of the communication module in the wireless node and results in the link failure. This paper addressed the major problem of link failure in the WSN and with the aim of providing robust solution so as to satisfy the stern end-to-end requirements of QoS-based communication networks. In this paper we modifies existing fully distributed cluster-based routing algorithm by addressing local recovery for the link failure. Performance of this new fault-tolerant fully distributed cluster-based routing algorithm is evaluated by simulating it in NS2 environment and we show that it performs better than the existing algorithm and provide better solution for fault detection and fault management along the QoS paths

    Programmable Electronic Delay Device for Detonator

    Get PDF
    Delay devices are used to perform various roles like aiding in sequential release of payload, providing safety in flight/ trajectory, enabling self-destruction of ammunitions, allowing blast of the warhead after penetration in runway/bunker, etc. The delay time is introduced to cause a series of detonation events from the explosive charge, in order to achieve desired efficiency. Inspite of many improvements performed along the years, in search of precise delay compositions, it is noticed that the obtained accuracy in chemical delay compositions is of ±4%.The present work using microcontroller gives possible accuracy of upto ±1%.This paper discusses about programmable electronic delay device, timing accuracy of electronic delay device and its merits over chemical delay devices.Defence Science Journal, 2013, 63(3), pp.305-307, DOI:http://dx.doi.org/10.14429/dsj.63.288

    Nonlinearities in Conservative Growth Equations

    Full text link
    Using the dynamic renormalization group (DRG) technique, we analyze general nonlinearities in a conservative nonlinear growth equation with non-conserved gaussian white noise. We show that they fall in two classes only: the Edwards-Wilkinson and Lai-Das Sarma types, by explicitly computing the associated amputated two and three point functions at the first order in perturbation parameter(s). We further generalize this analysis to higher order nonlinearities and also suggest a physically meaningful geometric interpretation of the same.Comment: REVTEX, will appear in Phys Rev E Rapid Comm. February 1996, .ps figure file available upon request to [email protected]

    Negligible particle-specific toxicity mechanism of silver nanoparticles: The role of Ag+ion release in the cytosol

    Get PDF
    Toxicity of silver nanoparticles (AgNPs) is supported by many observations in literature, but no mechanism details have been proved yet. Here we confirm and quantify the toxic potential of fully characterized AgNPs in HeLa and A549 cells. Notably, through a specific fluorescent probe, we demonstrate the intracellular release of Ag+ ions in living cells after nanoparticle internalization, showing that in-situ particle degradation is promoted by the acidic lysosomal environment. The activation of metallothioneins in response to AgNPs and the possibility to reverse the main toxic pathway by Ag+ chelating agents demonstrate a cause/effect relationship between ions and cell death. We propose that endocytosed AgNPs are degraded in the lysosomes and the release of Ag+ ions in the cytosol induces cell damages, while ions released in the cell culture medium play a negligible effect. These findings will be useful to develop safer-by-design nanoparticles and proper regulatory guidelines of AgNPs

    Pretransplant Erythropoiesis Stimulating Agent Hyporesponsiveness is Associated with Increased Kidney Allograft Failure and Mortality

    Get PDF
    Poor response to erythropoiesis stimulating agents (ESA) is associated with morbidity and mortality among dialysis patients. It is unclear whether the risk associated with poor ESA response during dialysis extends beyond kidney transplantation. We examined pretransplant ESA response and its effect on allograft failure and mortality

    Screening for kidney disease in vascular patients: SCreening for Occult REnal Disease (SCORED) experience

    Get PDF
    Background. SCreening for Occult REnal Disease (SCORED) is a novel screening guideline recently developed to identify individuals with a high likelihood of having prevalent chronic kidney disease (CKD). This simple scoring system, developed from general US representative samples and independently validated, was shown to outperform current clinical practice guidelines. Recently, CKD screening in individuals with cardiovascular disease (CVD) has been emphasized. We therefore evaluated the SCORED model in CVD patients in order to better understand the implications of CKD screening in this population

    Efficacy and Tolerability of Fixed-Dose Combination of Dexketoprofen and Dicyclomine Injection in Acute Renal Colic

    Get PDF
    Objective. To evaluate the efficacy and tolerability of a fixed-dose combination of dexketoprofen and dicyclomine (DXD) injection in patients with acute renal colic. Patients and Methods. Two hundred and seventeen patients were randomized to receive either DXD (n = 109) or fixed-dose combination of diclofenac and dicyclomine injection (DLD; n = 108), intramuscularly. Pain intensity (PI) was self-evaluated by patients on visual analogue scale (VAS) at baseline and at 1, 2, 4, 6, and 8 hours. Efficacy parameters were proportion of responders, difference in PI (PID) at 8 hours, and sum of analogue of pain intensity differences (SAPID). Tolerability was assessed by patients and physicians. Results. DXD showed superior efficacy in terms of proportion of responders (98.17% versus 81.48; P < 0.0001), PID at 8 hours (P = 0.002), and SAPID0–8 hours (P = 0.004). The clinical global impression for change in pain was significantly better for DXD than DLD. The incidence of adverse events was comparable in both groups. However, global assessment of tolerability was rated significantly better for DXD. Conclusion. DXD showed superior efficacy and tolerability than DLD in patients clinically diagnosed to be suffering from acute renal colic

    Sugar-sweetened soda consumption, hyperuricemia, and kidney disease

    Get PDF
    The metabolism of high-fructose corn syrup used to sweeten soda drinks may lead to elevations in uric acid levels. Here we determined whether soda drinking is associated with hyperuricemia and, as a potential consequence, reduced kidney function. At baseline, 15,745 patients in the Atherosclerosis Risk in Communities Study completed a dietary questionnaire and had measurements of their serum creatinine and uric acid. After 3 and 9 years of follow-up, multivariate odds ratios from logistic regressions for binary outcome of hyperuricemia and chronic kidney disease (eGFR less than 60 ml/min per 1.73 m2) were evaluated. Compared to participants who drank less, consumption of over one soda per day was associated with increased odds of prevalent hyperuricemia and chronic kidney disease. The odds ratio for chronic kidney disease significantly increased to 2.59 among participants who drank more than one soda per day and had a serum uric acid level over 9.0 mg/dl. In longitudinal analyses, however, drinking more than one soda per day was not associated with hyperuricemia or chronic kidney disease. Neither preexistent hyperuricemia nor development of hyperuricemia modified the lack of association between soda drinking and incident chronic kidney disease. Thus our study shows that high consumption of sugar-sweetened soda was associated with prevalent but not incident hyperuricemia and chronic kidney disease

    Full potential LAPW calculation of electron momentum density and related properties of Li

    Full text link
    Electron momentum density and Compton profiles in Lithium along ,, , and directions are calculated using Full-Potential Linear Augmented Plane Wave basis within generalized gradient approximation. The profiles have been corrected for correlations with Lam-Platzman formulation using self-consistent charge density. The first and second derivatives of Compton profiles are studied to investigate the Fermi surface breaks. Decent agreement is observed between recent experimental and our calculated values. Our values for the derivatives are found to be in better agreement with experiments than earlier theoretical results. Two-photon momentum density and one- and two-dimensional angular correlation of positron annihilation radiation are also calculated within the same formalism and including the electron-positron enhancement factor.Comment: 11 pages, 7 figures TO appear in Physical Review
    corecore