19 research outputs found

    Dynamical Symmetry Breaking in Models with the Yukawa Interaction

    Full text link
    We discuss models with a massless fermion and a self-interacting massive scalar field with the Yukawa interaction. The chiral condensate and the fermion mass are calculated analytically. It is shown that the models have a phase transition as a function of the squared mass of the scalar field.Comment: 7 pages, no figures, in Eqs. (7) and (11) one coefficient was change

    Example of a self-consistent solution for a fermion on domain wall

    Full text link
    We discuss a self-consistent solution for a fermion coupled to static scalar field in the form of a kink (domain wall). In particular, we study the case when the fermion occupies an excited non-zero frequency level in the presence of the domain wall field. The effect of the domain wall profile distortion is calculated analytically.Comment: 9 pages, no figures; minor corrections, one reference added, results unchange

    Stable branches of a solution for a fermion on domain wall

    Full text link
    We discuss the case when a fermion occupies an excited non-zero frequency level in the field of domain wall. We demonstrate that a solution exists for the coupling constant in the limited interval 1<g<gmax≈1.651<g<g_{max}\approx 1.65. We show that indeed there are different branches of stable solution for gg in this interval. The first one corresponds to a fermion located on the domain wall (1<g<2π41<g<\sqrt[4]{2\pi}). The second branch, which belongs to the interval 2π4≤g≤gmax\sqrt[4]{2\pi}\le g\le g_{max}, describes a polarized fermion off the domain wall. The third branch with 1<g<gmax1<g<g_{max} describes an excited antifermion in the field of the domain wall.Comment: 15 pages, 7 figures, references adde

    Charge-Symmetry Violation in Pion Scattering from Three-Body Nuclei

    Get PDF
    We discuss the experimental and theoretical status of charge-symmetry violation (CSV) in the elastic scattering of pi+ and pi- on 3H and 3He. Analysis of the experimental data for the ratios r1, r2, and R at Tpi = 142, 180, 220, and 256 MeV provides evidence for the presence of CSV. We describe pion scattering from the three-nucleon system in terms of single- and double-scattering amplitudes. External and internal Coulomb interactions as well as the Delta-mass splitting are taken into account as sources of CSV. Reasonable agreement between our theoretical calculations and the experimental data is obtained for Tpi = 180, 220, and 256 MeV. For these energies, it is found that the Delta-mass splitting and the internal Coulomb interaction are the most important contributions for CSV in the three-nucleon system. The CSV effects are rather sensitive to the choice of pion-nuclear scattering mechanisms, but at the same time, our theoretical predictions are much less sensitive to the choice of the nuclear wave function. It is found, however, that data for r2 and R at Tpi = 142 MeV do not agree with the predictions of our model, which may indicate that there are additional mechanisms for CSV which are important only at lower energies.Comment: 26 pages of RevTeX, 16 postscript figure

    Nanoscale transient magnetization gratings excited and probed by femtosecond extreme ultraviolet pulses

    Full text link
    We utilize coherent femtosecond extreme ultraviolet (EUV) pulses derived from a free electron laser (FEL) to generate transient periodic magnetization patterns with periods as short as 44 nm. Combining spatially periodic excitation with resonant probing at the dichroic M-edge of cobalt allows us to create and probe transient gratings of electronic and magnetic excitations in a CoGd alloy. In a demagnetized sample, we observe an electronic excitation with 50 fs rise time close to the FEL pulse duration and ~0.5 ps decay time within the range for the electron-phonon relaxation in metals. When the experiment is performed on a sample magnetized to saturation in an external field, we observe a magnetization grating, which appears on a sub-picosecond time scale as the sample is demagnetized at the maxima of the EUV intensity and then decays on the time scale of tens of picoseconds via thermal diffusion. The described approach opens prospects for studying dynamics of ultrafast magnetic phenomena on nanometer length scales

    Megahertz-rate ultrafast X-ray scattering and holographic imaging at the European XFEL

    Get PDF
    The advent of X-ray free-electron lasers (XFELs) has revolutionized fundamental science, from atomic to condensed matter physics, from chemistry to biology, giving researchers access to X-rays with unprecedented brightness, coherence and pulse duration. All XFEL facilities built until recently provided X-ray pulses at a relatively low repetition rate, with limited data statistics. Here, results from the first megahertz-repetition-rate X-ray scattering experiments at the Spectroscopy and Coherent Scattering (SCS) instrument of the European XFEL are presented. The experimental capabilities that the SCS instrument offers, resulting from the operation at megahertz repetition rates and the availability of the novel DSSC 2D imaging detector, are illustrated. Time-resolved magnetic X-ray scattering and holographic imaging experiments in solid state samples were chosen as representative, providing an ideal test-bed for operation at megahertz rates. Our results are relevant and applicable to any other non-destructive XFEL experiments in the soft X-ray range

    Time dependence of X-ray polarizability of a crystal induced by an intense femtosecond X-ray pulse

    No full text
    The time evolution of the electron density and the resulting time dependence of Fourier components of the X-ray polarizability of a crystal irradiated by highly intense femtosecond pulses of an X-ray free-electron laser (XFEL) is investigated theoretically on the basis of rate equations for bound electrons and the Boltzmann equation for the kinetics of the unbound electron gas. The photoionization, Auger process, electron-impact ionization, electron–electron scattering and three-body recombination have been implemented in the system of rate equations. An algorithm for the numerical solution of the rate equations was simplified by incorporating analytical expressions for the cross sections of all the electron configurations in ions within the framework of the effective charge model. Using this approach, the time dependence of the inner shell populations during the time of XFEL pulse propagation through the crystal was evaluated for photon energies between 4 and 12 keV and a pulse width of 40 fs considering a flux of 1012 photons pulse−1 (focusing on a spot size of ∼1 µm). This flux corresponds to a fluence ranging between 0.8 and 2.4 mJ µm−2. The time evolution of the X-ray polarizability caused by the change of the atomic scattering factor during the pulse propagation is numerically analyzed for the case of a silicon crystal. The time-integrated polarizability drops dramatically if the fluence of the X-ray pulse exceeds 1.6 mJ µm−2
    corecore