24 research outputs found

    Towards high CO2 conversions using Cu/Zn catalysts supported on aluminum fumarate metal-organic framework for methanol synthesis

    Get PDF
    SUPPLEMENTARY MATERIAL : FIGURE S1: Individual elemental maps of 7Cu/3Zn/AlFum MOF. (a) Al K 1; (b) Cu K 1; and (c) Zn K 1; FIGURE S2: Individual elemental maps of 15Cu/6.4Zn/AlFum MOF. (a) Al K 1; (b) Cu K 1; and (c) Zn K 1; FIGURE S3: Derivative TGA plot of AlFum MOF. FIGURE S4: Derivative TGA plot of 7Cu/3ZnO/AlFum MOF; FIGURE S5: Derivative TGA plot of 15Cu/6.4ZnO/AlFum MOF.Green methanol is a viable alternative for the storage of hydrogen and may be produced from captured anthropogenic sources of carbon dioxide. The latter was hydrogenated over Cu-ZnO catalysts supported on an aluminum fumarate metal-organic framework (AlFum MOF). The catalysts, prepared via slurry phase impregnation, were assessed for thermocatalytic hydrogenation of CO2 to methanol. PXRD, FTIR, and SBET exhibited a decrease in crystallinity of the AlFum MOF support after impregnation with Cu-Zn active sites. SEM, SEM-EDS, and TEM revealed that the morphology of the support is preserved after metal loading, where H2-TPR confirmed the presence of active sites for hydrogen uptake. The catalysts exhibited good activity, with a doubling in Cu and Zn loading over the AlFum MOF, resulting in a 4-fold increase in CO2 conversions from 10.8% to 45.6% and an increase in methanol productivity from 34.4 to 56.5 gMeOH/Kgcat/h. The catalysts exhibited comparatively high CO selectivity and high yields of H2O, thereby favoring the reverse water-gas shift reaction. The selectivity of the catalysts towards methanol was found to be 12.9% and 6.9%. The performance of the catalyst supported on AlFum MOF further highlights the potential use of MOFs as supports in the heterogeneous thermocatalytic conversion of CO2 to value-added products.The Royal Society- Foreign, Commonwealth & Development Office (FCDO) Africa Capacity Building Initiative (ACBI) Programme, the Council for Scientific and Industrial Research (CSIR), the South African Department of Science and Innovation (DSI) for research activities under HySA Infrastructure and the South Africa—France PROTEA Programme..https://www.mdpi.com/journal/catalystsam2023Chemistr

    Influence of the Zn/Zr ratio in the support of a copper-based catalyst for the synthesis of methanol from CO2

    No full text
    International audienceCuO-ZnO-ZrO2 catalysts were synthetized by co-precipitation synthesis. Copper content in catalysts was kept constant (30 wt% of Cu °) and ZnO was gradually substituted by ZrO2 in the support to have a greater understanding of the support’s effect and to find the optimal ZnO/ZrO2 ratio. These catalysts were fully characterized and then tested in the methanol synthesis via CO2 hydrogenation. The effects of reaction temperature and GHSV on the catalytic behavior were investigated. The mix of the characterization results predicted the optimum support that is composed of 50 wt% of ZnO and 50 wt% of ZrO2 with higher metallic copper surface area and higher copper dispersion. Surprisingly the optimum catalytic results were obtained for the 30Cu-ZZ66/34 catalyst, whose support was composed of 66 wt% of ZnO and 34 wt% of ZrO2. This catalyst presented good CO2 conversion (19.6%) and methanol selectivity (50%), leading to a methanol productivity of 725 gMeOH kgCata−1  h−1 at 280 °C, 50 bar and a GHSV of 25,000 h−1 (STP). Finally, the determining factor for the best catalytic activity is not the Zn/Zr ratio. To have the optimal catalytic activity in CO2 hydrogenation to methanol other parameters should be considered as well. They are: the nature and the state of copper species over the composite support; the homogeneity of the final composite sample, the ZnO particles size, and the number of ZnO-ZrO2 interactions. The perfect combination of them all plays an important role in the determination of the best copper-based catalyst for the synthesis of methanol from CO2

    Thermocatalytic Hydrogenation of CO2 to Methanol Using Cu-ZnO Bimetallic Catalysts Supported on Metal–Organic Frameworks

    No full text
    International audienceThe thermocatalytic hydrogenation of carbon dioxide (CO2) to methanol is considered as a potential route for green hydrogen storage as well as a mean for utilizing captured CO2, owing to the many established applications of methanol. Copper–zinc bimetallic catalysts supported on a zirconium-based UiO-66 metal–organic framework (MOF) were prepared via slurry phase impregnation and benchmarked against the promoted, co-precipitated, conventional ternary CuO/ZnO/Al2O3 (CZA) catalyst for the thermocatalytic hydrogenation of CO2 to methanol. A decrease in crystallinity and specific surface area of the UiO-66 support was observed using X-ray diffraction and N2-sorption isotherms, whereas hydrogen-temperature-programmed reduction and X-ray photoelectron spectroscopy revealed the presence of copper active sites after impregnation and thermal activation. Other characterisation techniques such as scanning electron microscopy, transmission electron microscopy, and thermogravimetric analysis were employed to assess the physicochemical properties of the resulting catalysts. The UiO-66 (Zr) MOF-supported catalyst exhibited a good CO2 conversion of 27 and 16% selectivity towards methanol, whereas the magnesium-promoted CZA catalyst had a CO2 conversion of 31% and methanol selectivity of 24%. The prepared catalysts performed similarly to a CZA commercial catalyst which exhibited a CO2 conversion and methanol selectivity of 30 and 15%. The study demonstrates the prospective use of Cu-Zn bimetallic catalysts supported on MOFs for direct CO2 hydrogenation to produce green methanol

    Towards High CO2 Conversions Using Cu/Zn Catalysts Supported on Aluminum Fumarate Metal-Organic Framework for Methanol Synthesis

    No full text
    Green methanol is a viable alternative for the storage of hydrogen and may be produced from captured anthropogenic sources of carbon dioxide. The latter was hydrogenated over Cu-ZnO catalysts supported on an aluminum fumarate metal-organic framework (AlFum MOF). The catalysts, prepared via slurry phase impregnation, were assessed for thermocatalytic hydrogenation of CO2 to methanol. PXRD, FTIR, and SBET exhibited a decrease in crystallinity of the AlFum MOF support after impregnation with Cu-Zn active sites. SEM, SEM-EDS, and TEM revealed that the morphology of the support is preserved after metal loading, where H2-TPR confirmed the presence of active sites for hydrogen uptake. The catalysts exhibited good activity, with a doubling in Cu and Zn loading over the AlFum MOF, resulting in a 4-fold increase in CO2 conversions from 10.8% to 45.6% and an increase in methanol productivity from 34.4 to 56.5 gMeOH/Kgcat/h. The catalysts exhibited comparatively high CO selectivity and high yields of H2O, thereby favoring the reverse water-gas shift reaction. The selectivity of the catalysts towards methanol was found to be 12.9% and 6.9%. The performance of the catalyst supported on AlFum MOF further highlights the potential use of MOFs as supports in the heterogeneous thermocatalytic conversion of CO2 to value-added products

    Towards High CO<sub>2</sub> Conversions Using Cu/Zn Catalysts Supported on Aluminum Fumarate Metal-Organic Framework for Methanol Synthesis

    No full text
    Green methanol is a viable alternative for the storage of hydrogen and may be produced from captured anthropogenic sources of carbon dioxide. The latter was hydrogenated over Cu-ZnO catalysts supported on an aluminum fumarate metal-organic framework (AlFum MOF). The catalysts, prepared via slurry phase impregnation, were assessed for thermocatalytic hydrogenation of CO2 to methanol. PXRD, FTIR, and SBET exhibited a decrease in crystallinity of the AlFum MOF support after impregnation with Cu-Zn active sites. SEM, SEM-EDS, and TEM revealed that the morphology of the support is preserved after metal loading, where H2-TPR confirmed the presence of active sites for hydrogen uptake. The catalysts exhibited good activity, with a doubling in Cu and Zn loading over the AlFum MOF, resulting in a 4-fold increase in CO2 conversions from 10.8% to 45.6% and an increase in methanol productivity from 34.4 to 56.5 gMeOH/Kgcat/h. The catalysts exhibited comparatively high CO selectivity and high yields of H2O, thereby favoring the reverse water-gas shift reaction. The selectivity of the catalysts towards methanol was found to be 12.9% and 6.9%. The performance of the catalyst supported on AlFum MOF further highlights the potential use of MOFs as supports in the heterogeneous thermocatalytic conversion of CO2 to value-added products
    corecore