30 research outputs found

    Demonstration of Optical Nonlinearity in InGaAsP/InP Passive Waveguides

    Get PDF
    We report on the study of the third-order nonlinear optical interactions in Inx_{x}Ga1−x_{1-x}Asy_{y}P1−y_{1-y}/InP strip-loaded waveguides. The material composition and waveguide structures were optimized for enhanced nonlinear optical interactions. We performed self-phase modulation, four-wave mixing and nonlinear absorption measurements at the pump wavelength 1568 nm in our waveguides. The nonlinear phase shift of up to 2.5π2.5\pi has been observed in self-phase modulation experiments. The measured value of the two-photon absorption coefficient α2\alpha_2 was 15 cm/GW. The four-wave mixing conversion range, representing the wavelength difference between maximally separated signal and idler spectral components, was observed to be 45 nm. Our results indicate that InGaAsP has a high potential as a material platform for nonlinear photonic devices, provided that the operation wavelength range outside the two-photon absorption window is selected

    Using surface lattice resonances to engineer nonlinear optical processes in metal nanoparticle arrays

    Get PDF
    Collective responses of localized surface plasmon resonances, known as surface lattice resonances (SLRs) in metal nanoparticle arrays, can lead to high quality factors (~100), large local-field enhancements and strong light-matter interactions. SLRs have found many applications in linear optics, but little work of the influence of SLRs on nonlinear optics has been reported. Here we show how SLRs could be utilized to enhance nonlinear optical interactions. We devote special attention to the sum-frequency, difference-frequency, and third-harmonic generation processes because of their potential for the realization of novel sources of light. We also demonstrate how such arrays could be engineered to enhance higher-order nonlinear optical interactions through cascaded nonlinear processes. In particular, we demonstrate how the efficiency of third-harmonic generation could be engineered via cascaded second-order responses

    Dynamic Control of Spontaneous Emission Using Magnetized InSb Higher-Order-Mode Antennas

    Full text link
    We exploit InSb's magnetic-induced optical properties to propose THz sub-wavelength antenna designs that actively tune the radiative decay rates of dipole emitters at their proximity. The proposed designs include a spherical InSb antenna and a cylindrical Si-InSb hybrid antenna that demonstrate distinct behaviors; the former dramatically enhances both radiative and non-radiative decay rates in the epsilon-near-zero region due to the dominant contribution of the Zeeman splitting electric octupole mode. The latter realizes significant radiative decay rate enhancement via magnetic octupole mode, mitigating the quenching process and accelerating the photon production rate. A deep learning-based optimization of emitter positioning further enhances the quantum efficiency of the proposed hybrid system. These novel mechanisms are potentially promising for tunable THz single-photon sources in integrated quantum networks

    Hybrid THz architectures for molecular polaritonics

    Full text link
    Physical and chemical properties of materials can be modified by a resonant optical mode. Such recent demonstrations have mostly relied on a planar cavity geometry, others have relied on a plasmonic resonator. However, the combination of these two device architectures have remained largely unexplored, especially in the context of maximizing light-matter interactions. Here, we investigate several schemes of electromagnetic field confinement aimed at facilitating the collective coupling of a localized photonic mode to molecular vibrations in the terahertz region. The key aspects are the use of metasurface plasmonic structures combined with standard Fabry-Perot configurations and the deposition of a thin layer of glucose, via a spray coating technique, within a tightly focused electromagnetic mode volume. More importantly, we demonstrate enhanced vacuum Rabi splittings reaching up to 200 GHz when combining plasmonic resonances, photonic cavity modes and low-energy molecular resonances. Furthermore, we demonstrate how a cavity mode can be utilized to enhance the zero-point electric field amplitude of a plasmonic resonator. Our study provides key insight into the design of polaritonic platforms with organic molecules to harvest the unique properties of hybrid light-matter states.Comment: 7 pages (5 Figures) + 7 pages Appendix (5 Figures), updated versio
    corecore