6 research outputs found

    SNF1-related protein kinases type 2 are involved in plant responses to cadmium stress.

    No full text
    Cadmium ions are notorious environmental pollutants. To adapt to cadmium-induced deleterious effects plants have developed sophisticated defense mechanisms. However, the signaling pathways underlying the plant response to cadmium are still elusive. Our data demonstrate that SnRK2s (for SNF1-related protein kinase2) are transiently activated during cadmium exposure and are involved in the regulation of plant response to this stress. Analysis of tobacco (Nicotiana tabacum) Osmotic Stress-Activated Protein Kinase activity in tobacco Bright Yellow 2 cells indicates that reactive oxygen species (ROS) and nitric oxide, produced mainly via an l-arginine-dependent process, contribute to the kinase activation in response to cadmium. SnRK2.4 is the closest homolog of tobacco Osmotic Stress-Activated Protein Kinase in Arabidopsis (Arabidopsis thaliana). Comparative analysis of seedling growth of snrk2.4 knockout mutants versus wild-type Arabidopsis suggests that SnRK2.4 is involved in the inhibition of root growth triggered by cadmium; the mutants were more tolerant to the stress. Measurements of the level of three major species of phytochelatins (PCs) in roots of plants exposed to Cd(2+) showed a similar (PC2, PC4) or lower (PC3) concentration in snrk2.4 mutants in comparison to wild-type plants. These results indicate that the enhanced tolerance of the mutants does not result from a difference in the PCs level. Additionally, we have analyzed ROS accumulation in roots subjected to Cd(2+) treatment. Our data show significantly lower Cd(2+)-induced ROS accumulation in the mutants’ roots. Concluding, the obtained results indicate that SnRK2s play a role in the regulation of plant tolerance to cadmium, most probably by controlling ROS accumulation triggered by cadmium ions

    Pregnancy management and outcome in patients with four different tetrahydrobiopterin disorders

    No full text
    IntroductionInborn errors of tetrahydrobiopterin (BH4) biosynthesis or recycling are a group of very rare neurometabolic diseases. Following growing awareness and improved availability of drug treatment the number of patients with BH4 disorders reaching adulthood is constantly increasing. Pregnancy care of patients with these disorders is therefore a new challenge for clinicians.MethodsThis retrospective study summarises for the first time clinical and biochemical monitoring data of 16 pregnancies in seven women with different disorders of BH4 metabolism and evaluates treatment regimens before and during pregnancy in relation to the obstetrical outcome and paediatric follow-up.ResultsWorsening of pre-existing neurological symptoms or occurrence of new symptoms during pregnancy was not observed in most of the cases. Treatment regimens remained mostly unchanged. Pregnancies were not complicated by disease-specific features. Organ abnormalities, miscarriage, prematurity, IUGR and chromosomal changes were occasionally reported, without showing any association with the standard drug treatment for BH4 deficiencies.ConclusionAlthough our data on 16 pregnancies in seven patients did notpresent any association of standard drug treatment with an increased rate of pregnancy complications, abnormal obstetrical or paediatric outcome, an intensive clinical and biochemical supervision by a multidisciplinary team before, during and after the pregnancy in any BH4 deficiency is essential since available data on pregnancies in patients with BH4 deficiencies is limited

    Mechanisms and Signaling Pathways of Salt Tolerance in Crops: Understanding from the Transgenic Plants

    No full text
    corecore