3 research outputs found

    Practical approach to IP Scheduled throughput measurements in Dual Connectivity systems

    Get PDF
    IP scheduled throughput defined according to 3GPP TS 36.314 reflects user throughput regardless of traffic characteristics, and therefore has become one of the most important indicators for monitoring Quality of Service (QoS) of the end user in Evolved Universal Terrestrial Radio Access Network (E-UTRAN). However, networks built on a distributed architecture make the above definition impossible to be applied directly due to the implementation challenges. This paper gives an overview of the classical Long Term Evolution (LTE) architecture as opposed to Dual Connectivity (DC) topology and focuses on a novel method of solving the calculation issue with the IP scheduled throughput measurement in edge computing environment. Experimental results show a good agreement with the real end user perception

    Exchange-correlation kernels for excited states in solids

    Full text link
    The performance of several common approximations for the exchange-correlation kernel within time-dependent density-functional theory is tested for elementary excitations in the homogeneous electron gas. Although the adiabatic local-density approximation gives a reasonably good account of the plasmon dispersion, systematic errors are pointed out and traced to the neglect of the wavevector dependence. Kernels optimized for atoms are found to perform poorly in extended systems due to an incorrect behavior in the long-wavelength limit, leading to quantitative deviations that significantly exceed the experimental error bars for the plasmon dispersion in the alkali metals.Comment: 7 pages including 5 figures, RevTe

    Practical Approach to IP Scheduled Throughput Measurements in Dual Connectivity Systems

    No full text
    IP scheduled throughput defined according to 3GPP TS 36.314 reflects user throughput regardless of traffic characteristics, and therefore has become one of the most important indicators for monitoring Quality of Service (QoS) of the end user in Evolved Universal Terrestrial Radio Access Network (E-UTRAN). However, networks built on a distributed architecture make the above definition impossible to be applied directly due to the implementation challenges. This paper gives an overview of the classical Long Term Evolution (LTE) architecture as opposed to Dual Connectivity (DC) topology and focuses on a novel method of solving the calculation issue with the IP scheduled throughput measurement in edge computing environment. Experimental results show a good agreement with the real end user perception
    corecore