34 research outputs found

    Global Navigation Satellite Systems – Perspectives on Development and Threats to System Operation

    Get PDF
    The rapid development of satellite navigation and timing technologies and the broad availability of user equipment and applications has dramatically changed the world over the last 20 years. It took 38 years from the launch of the world’s first artificial satellite, Sputnik 1, (October 4, 1957) to the day NAVSTAR GPS became fully operational (July 17, 1995). In the next 20 years user equipment became widely available at the consumer level, and 10 global and regional satellite systems were partially or fully deployed. These highly precise signals provided free to the user have been incorporated by clever engineers into virtually every technology. At the same time interference with these signals (spoofing and jamming) have become a significant day to day problem in many societies and pose a significant threat to critical infrastructure. This paper provides information on the current status and development of navigation satellite systems based on data provided by the systems' administrators. It also provides information on Loran/eLoran, a system which many nations have selected as a complement and backup for satellite navigation systems

    The Virtual Model of Deep Water Container Terminal T2 in Port GdaƄsk

    Get PDF
    The level of education of seafarers currently depends among other things on the use of simulators in the training process. The reliability of the computer simulation depends on several factors such as own ship models or virtual training areas. Currently available software on the market allows you to edit and create virtual areas for specific manoeuvring trials. Having a faithful copy of a real basin is an important element of harbour pilots courses or in carrying out a wide range of navigational analyses. In this paper the authors describe the process of creating Container Terminal T2 at DCT GdaƄsk in the simulator environment

    Application of Least Squares with Conditional Equations Method for Railway Track Inventory Using GNSS Observations

    Get PDF
    Satellite geodetic networks are commonly used in surveying tasks, but they can also be used in mobile surveys. Mobile satellite surveys can be used for trackage inventory, diagnostics and design. The combination of modern technological solutions with the adaptation of research methods known in other fields of science offers an opportunity to acquire highly accurate solutions for railway track inventory. This article presents the effects of work carried out using a mobile surveying platform on which Global Navigation Satellite System (GNSS) receivers were mounted. The satellite observations (surveys) obtained were aligned using one of the methods known from classical land surveying. The records obtained during the surveying campaign on a 246th km railway track section were subjected to alignment. This article provides a description of the surveying campaign necessary to obtain measurement data and a theoretical description of the method employed to align observation results as well as their visualisation. Document type: Articl

    Assessment of chemical-crosslink-assisted protein structure modeling in CASP13

    Get PDF
    International audienceWith the advance of experimental procedures obtaining chemical crosslinking information is becoming a fast and routine practice. Information on crosslinks can greatly enhance the accuracy of protein structure modeling. Here, we review the current state of the art in modeling protein structures with the assistance of experimentally determined chemical crosslinks within the framework of the 13th meeting of Critical Assessment of Structure Prediction approaches. This largest‐to‐date blind assessment reveals benefits of using data assistance in difficult to model protein structure prediction cases. However, in a broader context, it also suggests that with the unprecedented advance in accuracy to predict contacts in recent years, experimental crosslinks will be useful only if their specificity and accuracy further improved and they are better integrated into computational workflows

    Molecular dynamics simulations of the growth of poly(chloro-para-xylylene) films

    Get PDF
    Parylene C, poly(chloro-para-xylylene) is the most widely used member of the parylene family due to its excellent chemical and physical properties. In this work we analyzed the formation of the parylene C film using molecular mechanics and molecular dynamics methods. A five unit chain is necessary to create a stable hydrophobic cluster and to adhere to a covered surface. Two scenarios were deemed to take place. The obtained results are consistent with a polymer film scaling growth mechanism and contribute to the description of the dynamic growth of the parylene C polymer

    Impact of AlphaFold on Structure Prediction of Protein Complexes: The CASP15-CAPRI Experiment

    Get PDF
    We present the results for CAPRI Round 54, the 5th joint CASP-CAPRI protein assembly prediction challenge. The Round offered 37 targets, including 14 homo-dimers, 3 homo-trimers, 13 hetero-dimers including 3 antibody-antigen complexes, and 7 large assemblies. On average ~70 CASP and CAPRI predictor groups, including more than 20 automatics servers, submitted models for each target. A total of 21941 models submitted by these groups and by 15 CAPRI scorer groups were evaluated using the CAPRI model quality measures and the DockQ score consolidating these measures. The prediction performance was quantified by a weighted score based on the number of models of acceptable quality or higher submitted by each group among their 5 best models. Results show substantial progress achieved across a significant fraction of the 60+ participating groups. High-quality models were produced for about 40% for the targets compared to 8% two years earlier, a remarkable improvement resulting from the wide use of the AlphaFold2 and AlphaFold-Multimer software. Creative use was made of the deep learning inference engines affording the sampling of a much larger number of models and enriching the multiple sequence alignments with sequences from various sources. Wide use was also made of the AlphaFold confidence metrics to rank models, permitting top performing groups to exceed the results of the public AlphaFold-Multimer version used as a yard stick. This notwithstanding, performance remained poor for complexes with antibodies and nanobodies, where evolutionary relationships between the binding partners are lacking, and for complexes featuring conformational flexibility, clearly indicating that the prediction of protein complexes remains a challenging problem

    Impact of AlphaFold on structure prediction of protein complexes: The CASP15-CAPRI experiment

    Get PDF
    We present the results for CAPRI Round 54, the 5th joint CASP-CAPRI protein assembly prediction challenge. The Round offered 37 targets, including 14 homodimers, 3 homo-trimers, 13 heterodimers including 3 antibody-antigen complexes, and 7 large assemblies. On average ~70 CASP and CAPRI predictor groups, including more than 20 automatics servers, submitted models for each target. A total of 21 941 models submitted by these groups and by 15 CAPRI scorer groups were evaluated using the CAPRI model quality measures and the DockQ score consolidating these measures. The prediction performance was quantified by a weighted score based on the number of models of acceptable quality or higher submitted by each group among their five best models. Results show substantial progress achieved across a significant fraction of the 60+ participating groups. High-quality models were produced for about 40% of the targets compared to 8% two years earlier. This remarkable improvement is due to the wide use of the AlphaFold2 and AlphaFold2-Multimer software and the confidence metrics they provide. Notably, expanded sampling of candidate solutions by manipulating these deep learning inference engines, enriching multiple sequence alignments, or integration of advanced modeling tools, enabled top performing groups to exceed the performance of a standard AlphaFold2-Multimer version used as a yard stick. This notwithstanding, performance remained poor for complexes with antibodies and nanobodies, where evolutionary relationships between the binding partners are lacking, and for complexes featuring conformational flexibility, clearly indicating that the prediction of protein complexes remains a challenging problem

    The Concept of Using the Decision-Robustness Function in Integrated Navigation Systems

    No full text
    The diversity and non-uniformity of the positioning systems available in maritime navigation systems often impede the watchkeeping officer in the selection of the appropriate positioning system, in particular, in restricted basins. Thus, it is necessary to introduce a mathematical apparatus to suggest, in an automated manner, which of the available systems should be used at the given moment of a sea trip. Proper selection of the positioning system is particularly important in integrated navigation systems, in which the excess of navigation information may impede the final determinations. In this article, the authors propose the use of the decision-robustness function to assist in the process of selecting the appropriate positioning system and reduce the impact of navigation observations encumbered with large errors in self-positioning accuracy. The authors present a mathematical apparatus describing the decision function (a priori object), with the determination of decision-assistance criteria, and the robustness function (a posteriori object), with different types of attenuation function. In addition, the authors present a computer application integrating both objects in the decision-robustness function. The study was concluded by a test showing the practical application of the decision-robustness function proposed in the title

    M-Estimation as a Tool Supporting a Vessel Traffic Controller in the VTS System

    No full text
    In order to improve maritime safety and the efficiency of vessel traffic, systems supervising vessel traffic, i.e. VTS (Vessel Traffic Service), started to be created. These systems are aimed to control vessel traffic in waters where traffic congestion, a large concentration of vessels or the presence of navigational hazards creates a risk of collision or stranding

    Methodology of Creation the Simulation Basin based on the Projected Canal through the Vistula Spit

    No full text
    The biggest problem in the process of implementation of the new sea areas project or aids to navigation systems is to check the assumptions without compromising security on real waters. Today, digital models are available for easy and inexpensive replacement of the research methods used so far. For this purpose the navigational and maneuvering simulators are perfect
    corecore