
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Assessment of chemical-crosslink-assisted protein structure
modeling in CASP13
Citation for published version:
Fajardo, JE, Shrestha, R, Gil, N, Belsom, A, Crivelli, SN, Czaplewski, C, Fidelis, K, Grudinin, S, Karasikov,
M, Karczyska, AS, Kryshtafovych, A, Leitner, A, Liwo, A, Lubecka, EA, Monastyrskyy, B, Pagès, G,
Rappsilber, J, Sieradzan, AK, Sikorska, C, Trabjerg, E & Fiser, A 2019, 'Assessment of chemical-crosslink-
assisted protein structure modeling in CASP13', Proteins: Structure, Function and Bioinformatics, vol. 87,
no. 12, pp. 1283-1297. https://doi.org/10.1002/prot.25816

Digital Object Identifier (DOI):
10.1002/prot.25816

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Proteins: Structure, Function and Bioinformatics

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 31. Jul. 2020

https://www.research.ed.ac.uk/portal/en/persons/juri-rappsilber(524f4467-0e44-452f-b32c-9591d4986607).html
https://www.research.ed.ac.uk/portal/en/persons/juri-rappsilber(524f4467-0e44-452f-b32c-9591d4986607).html
https://www.research.ed.ac.uk/portal/en/publications/assessment-of-chemicalcrosslinkassisted-protein-structure-modeling-in-casp13(7b0b3fb1-8bc8-4c11-ab3a-23d5dea2b245).html
https://www.research.ed.ac.uk/portal/en/publications/assessment-of-chemicalcrosslinkassisted-protein-structure-modeling-in-casp13(7b0b3fb1-8bc8-4c11-ab3a-23d5dea2b245).html
https://doi.org/10.1002/prot.25816
https://doi.org/10.1002/prot.25816
https://www.research.ed.ac.uk/portal/en/publications/assessment-of-chemicalcrosslinkassisted-protein-structure-modeling-in-casp13(7b0b3fb1-8bc8-4c11-ab3a-23d5dea2b245).html


R E S E A R CH A R T I C L E

Assessment of chemical-crosslink-assisted protein
structure modeling in CASP13

J. Eduardo Fajardo1,2 | Rojan Shrestha1,2 | Nelson Gil1,2 | Adam Belsom3 |

Silvia N. Crivelli4 | Cezary Czaplewski5 | Krzysztof Fidelis6 | Sergei Grudinin7 |

Mikhail Karasikov8,9,10 | Agnieszka S. Karczy�nska5 | Andriy Kryshtafovych6 |

Alexander Leitner11 | Adam Liwo5,12 | Emilia A. Lubecka13 | Bohdan Monastyrskyy6 |

Guillaume Pagès7 | Juri Rappsilber2,14 | Adam K. Sieradzan5 | Celina Sikorska5 |

Esben Trabjerg11 | Andras Fiser1,2

1Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York

2Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York

3Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany

4Department of Computer Science, UC Davis, Davis, California

5Faculty of Chemistry, University of Gda�nsk, Gda�nsk, Poland

6Genome Center, University of California, Davis, California

7University of Grenoble Alpes, CNRS, Grenoble, France

8Center for Energy Systems, Skolkovo Institute of Science and Technology, Moscow, Russia

9Moscow Institute of Physics and Technology, Moscow, Russia

10Department of Computer Science, ETH Zurich, Zurich, Switzerland

11Department of Biology, Institute of Molecular Systems Biology, Zurich, Switzerland

12School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Republic of Korea

13Institute of Informatics, Faculty of Mathematics, Physics, and Informatics, University of Gda�nsk, Gda�nsk, Poland

14Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK

Correspondence

Andras Fiser, Department of Systems and

Computational Biology and Department of

Biochemistry, Albert Einstein College of

Medicine, 1300 Morris Park Avenue, Bronx,

NY 10461.

Email: andras.fiser@einstein.yu.edu

Funding information

Benzon Foundation; L'Agence Nationale de la

Recherche, Grant/Award Number: ANR-

15-CE11-0029-03; National Institute of

Allergy and Infectious Diseases, Grant/Award

Number: AI141816; National Institute of

General Medical Sciences, Grant/Award

Numbers: GM100482, GM118709; National

Science Center of Poland, Grant/Award

Numbers: UMO-2017/25/B/ST4/01026,

UMO-2017/26/M/ST4/00044, UMO-

2017/27/B/ST4/00926

Abstract

With the advance of experimental procedures obtaining chemical crosslinking

information is becoming a fast and routine practice. Information on crosslinks can

greatly enhance the accuracy of protein structure modeling. Here, we review the

current state of the art in modeling protein structures with the assistance of

experimentally determined chemical crosslinks within the framework of the 13th

meeting of Critical Assessment of Structure Prediction approaches. This largest-

to-date blind assessment reveals benefits of using data assistance in difficult to

model protein structure prediction cases. However, in a broader context, it also

suggests that with the unprecedented advance in accuracy to predict contacts in

recent years, experimental crosslinks will be useful only if their specificity and

accuracy further improved and they are better integrated into computational

workflows.
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1 | INTRODUCTION

Critical assessment of protein structure prediction (CASP) is a biannual

meeting that started in 1994 and uses a blind prediction format to

assess the accuracy of various protein structure modeling

approaches.1 Protein sequences (targets) are released to the public

for modeling, while experimental laboratories attempt to solve

their structures using X-ray crystallography, NMR spectroscopy or

cryoelectron microscopy. The experiments run through the sum-

mer months, after which the predicted structures are compared to

the experimentally solved ones to identify the approaches that

resulted in the most accurate predictions. With the advances in

and increased accessibility of high-throughput experimental

techniques,2-4 data-assisted categories were added to the CASP

experiment starting at CASP11 in 2014. Among several data-

assisted categories, here we review advances in the chemical

crosslinking/mass spectrometry (XL-MS) data-assisted category

in CASP13. In this setting, information on chemically crosslinked

residues provides additional restraints that can be incorporated

into the modeling of protein structures. Compared to classical

structural characterization methods such as X-ray crystallography

and NMR spectroscopy, the practical advantages of the XL-MS

technique are that it only requires a small amount of sample

(nanomoles or less), can be performed on crude, heterogeneous

and dilute protein samples, and can analyze flexible protein struc-

tures. Moreover, crosslinking experiments can be performed in a

relatively short timeframe (days). Another possible advantage is

that crosslinks are established in solution and therefore can poten-

tially be more informative about the in vivo organization and

dynamics of the target protein.

All targets in the XL-assisted modeling category were solved by

X-ray crystallography and provided to the XL-MS labs as purified

protein samples. CASP organizers asked some of these X-ray crystal-

lography groups to share purified protein samples. The primary focus

was on difficult-to-model protein targets, for which there were no

trivial templates available in structural databases. The samples were

shipped to two research groups specializing in chemical crosslinking

and mass spectrometry: Alexander Leitner's group (Zurich) and Juri

Rappsilber's group (Berlin, Edinburgh). Some proteins were shipped

to both groups, while some to only one (A.L.). The two groups used

different experimental approaches to generate the crosslinking data.

The data were released to modelers after the prediction window for

the corresponding regular target (modeling without data assistance)

was closed. The predictors were given an opportunity to submit

structure models built with the assistance of the crosslinking

restraints in a 2-3-week period.

2 | MATERIALS AND METHODS

2.1 | Targets

Purified protein samples of 8 regular CASP13 targets—H0953,

H0957, H0968, T0975, T0981, T0985, T0987 and T0999—were

provided by Matthew Dunne (ETH Zurich, target H0953), Karolina

Michalska (Argonne National Lab, H0957 and H0968), Chi-Lin Tsai

(UT MD Anderson Cancer Center, T0975), Mark van Raaij (Centro

Nacional de Biotecnologia of Spain, T0981), Jose Henrique Pereira

(Lawrence Berkeley Lab, T0985), Lindsey Spiegelman (UCSD,

T0987), and Marcus Hartmann (Max Planck Institute, T0999), and

shipped to the crosslinking laboratories. Three of these targets

were heteromeric complexes (those starting with 'H'), two

homomultimers (T0981 and T0999), and the remaining three -

monomers. Alexander Leitner's group generated crosslinking data

sets for all eight targets, including three heterocomplexes (names

of the released data-assisted targets start with the uppercase “X”,

and referred to as “BigX” group in the following), and Juri Rap-

psilber's group did so for four of the targets, including two com-

plexes (targets start with the lowercase 'x', and referred to as

“Smallx” group). If a protein was a heterocomplex, then the whole

complex and its subunits were released as separate crosslink-

assisted targets. For instance, a protein corresponding to the

regular heterodimeric target H0957 was released for crosslinking-

assisted prediction as six targets: X0957 and x0957 (whole com-

plex, different data sets), X0957s1 and x0957s1 (first subunit,

different data sets), and X0957s2 and x0957s2 (second subunit,

different data sets). Overall, 22 crosslinking-assisted targets were

released in CASP13, including 5 heteromeric targets (3 different

protein complexes) and 17 single-sequence targets (11 different

prediction sequences/subunits).

2.2 | Evaluation units (domains)

As it is customary in CASP, prediction results were evaluated

at different levels of protein structural organization, with empha-

sis on domain-based evaluation. Similarly to regular targets,

crosslinking-assisted targets were split into evaluation units.5

Eleven different prediction sequences (subunits) were split into

19 distinct-sequence tertiary structure evaluation units (Table 1).

Since models were built with the assistance of different

crosslinking data sets separately (ie, “x” and “X” targets), these

models were evaluated separately, which brought the total num-

ber of evaluation units to 27. The oligomeric targets were evalu-

ated as whole complexes.
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2.3 | Chemical crosslinking experiments at ETH
Zurich (BigX)

2.3.1 | Crosslinking reaction and sample processing

For all other targets, except target X0999, the following procedures

were followed. Protein stock solutions were provided by CASP con-

tributors and used as received, if the buffer was compatible with

crosslinking experiments (Supplementary Table 1). For target X0981,

the buffer was exchanged to 20 mM HEPES, 150 mM NaCl pH 8.5.

Proteins and complexes were crosslinked following previously publi-

shed procedures.3,6 Conditions were initially optimized using SDS-

PAGE as a readout to minimize aggregation or the formation of higher

order oligomers unless it was known that multiple copies of the pro-

teins were present in the target structure. Most final crosslinking

experiments were performed with a protein or complex concentration

of 1 mg/mL, and samples were crosslinked for 30 minutes at 25�C at

a scale of approximately 50 μg of total protein (Supplementary

Table 1).

The crosslinked samples were further processed using standard

procedures. Steps included unfolding by urea (6 M), reduction of disul-

fide bonds with TCEP (2.5 mM), alkylation of free cysteine thiol

groups with iodoacetamide (5 mM) in the dark, and a two-step diges-

tion with endoproteinase Lys-C (Wako, 1:100, w/w) and trypsin

(Promega, 1:50, w/w). The digested protein samples were purified

with solid-phase extraction (Waters tC18 cartridges) and directly ana-

lyzed by liquid chromatography-tandem mass spectrometry (LC-MS/

MS) without further enrichment or fractionation.

Target X0999 was crosslinked in a collaboration with the group of

Marcus Hartmann (MPI Tübingen, Germany) prior to the start of

CASP13 (more details will be published elsewhere).

2.3.2 | MS data acquisition

LC-MS/MS analysis was performed on a Thermo Easy nLC 1000 LC

system coupled to a Thermo Orbitrap Elite mass spectrometer

equipped with a nano-electrospray source. The instrument was oper-

ated in data-dependent acquisition mode (DDA). MS data were

acquired in the Orbitrap at resolution 120 000, followed by fragmen-

tation of the 10 highest intensity ions by CID, before mass analysis in

the ion trap. The samples were analyzed in three technical replicates,

where a single run included ions with a charge state ≥ +2, while the

rest only included ions with a charge state ≥ +3.

2.3.3 | Data analysis

Thermo raw files were converted into the mzMXL format using

msconvert (ProteoWizard version 3.0.7494). MS/MS spectra were

searched using xQuest7 (version 2.1.4), against the target protein

sequence(s) as provided and including contaminants identified from a

search with Mascot (v. 2.1.5, MatrixScience) against the SwissProt

database. xQuest search settings were as follows: Enzyme: trypsin,

maximum number of missed cleavages: 2, MS mass tolerance: 5 ppm,

MS/MS mass tolerance: 0.2 Da for “common”-type fragment ions and

0.3 Da for “xlink”-type fragment ions. All putative identifications were

manually assessed.

2.3.4 | Data deposition in PRIDE

All mass spectrometry data have been deposited in the PRIDE

Archive8 with the following data set identifiers and are accessible at

https://www.ebi.ac.uk/pride/archive/projects/PXD######, the tar-

gets and corresponding web links are as follows: X0953: PXD010094;

X0957: PXD010003; X0968: PXD010004; X0975: PXD010385;

X0981: PXD010384; X0985: PXD010483; X0987: PXD010410;

X0999: PXD010479.

2.4 | Chemical crosslinking experiments at Berlin
(Smallx)

2.4.1 | Crosslinking reaction and sample processing

T0975 and T0987 had been forwarded to the Rappsilber Laboratory

as previously thawed-frozen samples by Esben Trabjerg from the

Leitner Laboratory at ETH Zurich.

Crosslinking was carried out according to previously described

procedures.9-11 Briefly, target proteins were crosslinked separately

using sulfosuccinimidyl 4,40-azipentanoate (sulfo-SDA) (Thermo Scien-

tific Pierce, Rockford, IL) in a two-stage reaction (using eight different

crosslinker-to-protein ratios: 0.13:1, 0.19:1, 0.25:1, 0.38:1, 0.5:1,

0.75:1, 1:1 and 1.5:1 [w/w], a protein concentration of 0.5 mg/mL

TABLE 1 Overview of targets in the crosslink-assisted modeling
category

Target/data set

Subunits/
sequences
(#residues)

Evaluation units/
domains (#residues)

X0953 X0953s1 (67) D1 (67)

X0953s2 (249) D1 (46), D2 (127), D3 (77)

X0957, x0957 {Xx}0957s1 (163) D1 (108), D2(54)

{Xx}0957s2 (155) D1 (155)

X0968, x0968 {Xx}0968s1 (119) D1 (119)

{Xx}0968s2 (116) D1 (116)

X0975, x0975 D1 (293)

X0981 D1 (105)

X0985 D1 (842)

X0987, x0987 D1 (185), D2(207)

X0999 D1 (386), D2(453),

D3(180), D4(244), D5(288)

Note: Upper case X and lower case x refer to different sets of

experimental crosslinks provided for the same target. First column lists

eight unique targets, sometimes explored by both experimental groups for

crosslinks. Second column refers to subunit level dissection of targets,

while the third column further splits targets into evaluation units. The total

number of targets were 27 (third column, EUs multiplied by the number of

data sets available for each of them (first column: X and x)).
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and using 20 μg protein aliquots), with reaction of the NHS-ester

firstly, subsequently followed by UV photoactivation at 365 nm, from

a UVP CL-1000 UV Crosslinker (UVP Inc.).

Following crosslinking, reaction conditions were mixed and

resulting crosslinked proteins separated by electrophoresis using

NuPAGE 4-12% Bis-Tris gels, with MES SDS running buffer and

staining using InstantBlue (Expedeon). Protein gel bands were

digested using trypsin via standard protocols.12 Resulting peptides

were desalted using StageTips.13,14

2.4.2 | MS data acquisition

Samples were analyzed using an HPLC (UltiMate 3500RS Nano LC

system, Thermo Fisher Scientific, San Jose, CA) coupled to a tribrid

mass spectrometer (Orbitrap Fusion Lumos Tribrid Mass Spectrome-

ter, fitted with an EASY-Spray Source, Thermo Fisher Scientific).

Peptides were loaded onto a 500 mm C18 EASY-Spray LC column

(Thermo Fisher Scientific), operating at 45�C. Mobile phase A con-

sisted of water and 0.1% formic acid, mobile phase B of 80% aceto-

nitrile, 0.1% formic acid, and 19.9% water. Peptides were loaded and

eluted at a flow-rate of 0.3 μL/min, using a linear gradient starting at

2% mobile phase B and increasing over 109 minutes to 40%,

followed by a linear increase over 11 minutes, from 40% to 95%

mobile phase B.

MS data were acquired in the Orbitrap at resolution 120 000,

using the top-speed data-dependent mode. Selected precursor ions

were fragmented using higher energy collisional dissociation (HCD),

using a normalized collision energy of 30%. Fragmentation spectra

were then recorded in the Orbitrap at resolution 30 000, AGC target

set to 5 x 104 and maximum injection time of 70 ms.

2.4.3 | Data processing

Raw files were processed into mgf files using ProteoWizard

msconvert (3.0.9576), with the inclusion of a MS2 peak filter for

the 20 most intense peaks in a 100 m/z window.15 The resulting

peak lists were searched against FASTA sequence files using Xi16

(https://github.com/Rappsilber-Laboratory/XiSearch) version

1.6.731, using the following settings: MS accuracy, 3 ppm; MS/MS

accuracy, 15 ppm; missing mono-isotopic peaks, 2; enzyme, trypsin;

maximum allowed missed cleavages, 4; crosslinker, SDA; fixed mod-

ifications, none; variable modifications, carbamidomethylation on

cysteine, oxidation on methionine, SDA-loop (SDA crosslink within

a peptide that is also crosslinked to a separate peptide, mass modi-

fication: 82.041865). The linkage specificity for sulfo-SDA was

assumed to be at lysine, serine, threonine, tyrosine, and protein

N-termini at one end, with the other end having specificity for

any amino acid residue. False discovery rates (FDR) 5, 10, 20%

(corresponding to reported confidence scores provided to modelers:

0.95, 0.9, 0.8) were estimated using xiFDR17 (a target-decoy approach

to false discovery rate error estimation), version 1.1.26.58.

2.4.4 | Data deposition in PRIDE

Mass spectrometry data were deposited to the ProteomeXchange

Consortium via the PRIDE partner repository8 with the data set iden-

tifier PXD010884 (accessible at https://www.ebi.ac.uk/pride/archive/

) (Reviewer account details: Username: reviewer91980@ebi.ac.uk,

Password: Ow22Vk9d).

2.5 | Participants and predictions

In CASP13, 14 prediction groups submitted 576 crosslinking-assisted

models on 17 tertiary structure prediction targets. In addition, 41 qua-

ternary structure predictions were submitted on 2 homooligomeric

targets and 157 predictions on 5 heteromeric targets. The number of

groups that provided models both with and without crosslinks ranged

from 3 to 6 per target.

The number of attempted targets and predictions varies signifi-

cantly by group. Six prediction groups were evaluated on 20 or more

domains, while the remaining eight - on twelve or fewer domains.

2.6 | Evaluation measures

To assess accuracy of crosslinking-assisted models and their improve-

ment over the corresponding non-assisted predictions, we employed

the GDT_TS measure18,19 for monomeric predictions, and the LDDT

measure20 for multimeric ones. Comparative analysis of these mea-

sures is provided in a recently published paper.21

To rank groups, we initially transformed per-target raw scores

into Z-scores considering only the first ranked models. However, the

number of predicted targets per group varied widely, from 3 to 27:

this could heavily influence any Z-score-based ranks, averages, or

cumulative scores. Therefore, we employed a pairwise comparison

among all groups, where a one-tailed Wilcoxon statistical test was

used at a significance cutoff of 0.05 to assess the significance of dif-

ferences in performance between two groups on the common set of

targets shared between them. This test was not possible to perform

if less than two common targets were shared between any two

groups.

3 | RESULTS

3.1 | Types of crosslinks

Crosslinking experiments were carried out using complementary

strategies (Figure 1). The group at ETH Zurich (a.k.a. BigX group)

performed reactions with residue-specific linkers: disuccinimidyl

suberate (DSS), which predominantly crosslinks primary amines on

Lys residues and the N-terminus of proteins, and a combination of

pimelic acid dihydrazide (PDH) and the coupling reagent DMTMM,

resulting in crosslinks between residues with carboxyl groups (Asp,

Glu, and the C-terminus) and “zero-length” links between Asp or

Glu and Lys. These crosslinking strategies are typically applied to

multisubunit assemblies and may not be the optimal choice for

1286 FAJARDO ET AL.

https://github.com/Rappsilber-Laboratory/XiSearch
https://www.ebi.ac.uk/pride/archive/
mailto:reviewer91980@ebi.ac.uk


small proteins or complexes of small proteins, where there may be

too few crosslinkable residues.

Reaction conditions were optimized using SDS-PAGE to minimize

the formation of homo-oligomers or non-native stoichiometries of

complexes, although the “true” oligomeric state was not known in all

cases. A single crosslinking experiment with the best conditions was

performed per target (for DSS and PDH in combination with

DMTMM, respectively).

Data analysis was performed using the in-house software

xQuest,7 and results were provided to the CASP participants with an

expected error (false discovery) rate of <5%, although accurate FDR

estimation is difficult if only very few crosslinks are identified. The

final reports were published on the CASP website and listed the

crosslinked residues along with the xQuest identification score

(the higher, the better), so that participating groups could adjust their

stringency thresholds, if desired. The main score of xQuest is a

weighted composite score from several subscores that reflect the

similarity of the experimentally observed and the predicted MS/MS

spectrum (eg, cross-correlation of fragment ions, percentage of cumu-

lative intensity that in the spectrum that is assigned to fragment ions),

much like score of conventional proteomics search engines. There-

fore, it is important to note that the xQuest identification score is only

a measure of the confidence of the mass spectrum identification and

is not related to any structural/distance property. In addition, the

group in Zurich pointed out regions in the protein sequences that

were not adequately covered by trypsin (eg, even complete trypsin

digestion of target X0953 would result in some very long peptides

that are unlikely to be identified by mass spectrometric analysis

under the conditions used for this study). Furthermore, the group in

Zurich also provided a list of residues that were found to be modi-

fied by the crosslinking reagents, but for which only one side of the

linker reacted (“dead-end” products, “mono-links”). These residues

may be considered solvent accessible/exposed, a fact that could also

be exploited during modeling.22

In contrast, the other source for crosslinking experiments, the

Rappsilber group (a.k.a. Smallx), used heterobifunctional, photo-

activatable crosslinking chemistry, where the reaction occurs firstly on

(predominantly) lysine residue side chains (but also the side chains of

serine, tyrosine, and threonine), and following photoactivation, com-

pletes crosslinking by inserting non-specifically into vicinal bonds. This

semispecificity has been shown to allow greater data density, which

can be beneficial for protein structure prediction.9 This approach pro-

vided the first experimental data in CASP history, in CASP11, in the

form of high-density XL-MS (HD-XL-MS) data4,10,23 and has been

subsequently reused for targets in CASP1211 and in the present study

for CASP13.

3.2 | Structure-based evaluation of crosslinking
information

Once the experimental protein structures became available, we

explored the general question of whether the crosslinks provided had

the potential to benefit the modeling. Two issues were explored: first,

if a crosslink is “valid,” and second, if it is “informative.” A crosslink

was assumed to be valid if it connected residues in the structure

within 30 Å of each other, once measured along the shortest path on

the surface of the protein.24 This general and generous cutoff was

selected based on earlier observation about the crosslinkable posi-

tions in proteins.3 Arguably a variable definition could be used for dif-

ferent types of crosslinks, for instance a shorter cutoff distance could

be applied to zero length crosslinks, but only about by 5 Å, according

to earlier studies.3 Using a shorter cutoff would increase the fraction

of invalid crosslinks at the price of incorrectly assigning some. As we

show later, there is no trivial drop in the distribution of observed

crosslinked distances and the definition we use here is intentionally

inclusive and renders crosslinks invalid only if these bridge really long

distances. The informativeness of crosslinks is a more subjective defi-

nition. Arguably, information on all crosslinks are informative, for

instance, to gain insight about surface accessibility.22 However, for

the current purpose, to model protein structures where even just

identifying the general topology of the fold is challenging, we assumed

that crosslinks that formed between more distant positions, preferably

beyond a supersecondary structure motif, were more informative than

the ones that connected residues within the same short motif or

within a well-defined secondary structure. We subjectively require a

minimum sequential separation of 50 residues to define informative

crosslinks. This excludes the possibility that crosslinks between two

adjacent helices of a typical length (4-6 turns each, plus a connecting

loop between them) are considered.

F IGURE 1 Crosslinking mass spectrometry data provided by the
two contributing labs on the four targets that were processed by both
groups: nonspecific crosslinks from Rappsilber lab (SmallX, red and
gray) and residue-specific crosslinks from the Leitner lab (BigX, blue).
Targets x0957 and x0968 are heteromeric complexes, while x0975
and x0987 are single chain proteins, as indicated in the figure
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The distribution of crosslinks shows that a substantial fraction

(27-47%) were formed between residues more than 30 Å away as

measured by the shortest Solvent Accessible Surface Distance24

(Figure 2). This large fraction of inconsistent crosslinks made it

challenging for modelers to simultaneously satisfy as many cross-

links as they could. In this assessment, we are evaluating crosslinks

on the experimental crystal structure, which cannot reflect various

levels of flexibility and dynamic movements of the protein. Cross-

links are established in solution therefore a substantial fraction of

crosslinks that we deemed invalid in this assessment actually may

reflect the real dynamic nature of some of the target protein struc-

tures. When exploring the fraction of informative crosslinks, which

were formed between residues 50 positions or more apart, we

found that about 40-60% of all crosslinks satisfy this condition

(Figure 3). If one combines these two requirements, it appears that

about 23% and 27% (Smallx: 277/1184 and BigX: 73/272) of cross-

links fall into this combined category, respectively. However, from

a practical point of view, the informativeness of crosslinks is known

to all users, because the sequence separation is easy to check;

therefore, a more practical measure is the fraction of valid and

informative crosslinks over all of the known-to-be-informative

ones, which results in 58% and 44% of crosslinks for the Smallx and

BigX data sources, respectively.

3.3 | Assessing the usefulness of confidence scores
of crosslinks

We also explored how much the provided confidence scores can help

to filter and enrich the set for valid crosslinks. Different types of

confidence scores were provided by the two experimental

labs. The BigX group gave scores between 15 and 50 where the

larger numbers indicate higher confidence of the mass spectrum

identification. When we count the enrichment of valid crosslinks as

a function of increasing confidence cutoff, we see a notable

improvement once we require a score of at least 35. At this point,

the fraction of valid crosslinks increases from 45% to 64%.

(Table 2). However, this comes at a price of keeping only 26% of

the original set of informative crosslinks, meaning that a large frac-

tion of valuable data is discarded. In case of the Smallx group, three

different confidence levels were provided: 80, 90, and 95 (Table 3).

Here, a slightly more informative selection can be made based on

the confidence values. The enrichment of valid crosslinks among

F IGURE 2 Distribution of crosslinks from the two experimental
sources, Smallx (red) and BigX (blue), as a function of the solvent
accessible surface distance (SASD) in angstroms. The table inset
shows the number of all crosslinks determined and the percent
fraction that fall within 0–30 Å (vertical dashed line on plot)

F IGURE 3 Distribution of crosslinks from the two experimental
sources, Smallx (red) and BigX (blue), as a function of the sequential
separation between crosslinked residues. The table inset shows the
number of all crosslinks determined and the percent fraction that
connects residues >50 positions apart

TABLE 2 Relationship between confidence levels (first column)
and the number of crosslinks above each cutoff value within the set
of informative crosslinks for data from BigX group

Confidence cutoff # Xlinks left
Percentage
of total

Percentage
valid

15 163 100 45

20 156 96 44

25 129 79 44

30 73 45 51

35 42 26 64

40 14 9 79

45 6 4 100

50 0 0 0
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the informative ones starts already at a higher value of ~59%, and

at a 95% confidence level cutoff value it increases to 71%. This

latter set still contains most of the original information (60% of

total); hence, the information loss is not as significant as in the case

of filtering the BigX input.

3.4 | Overall group performance at CASP13

Following our analysis on the valid and informative crosslinks, we

decided to focus only on those targets where at least a single valid

and informative crosslink was provided. We did this in order to

remove from the group performance comparison the effect that

comes from targets where information on crosslinks does not play any

role and all differences are due to the quality of initial models gener-

ated by the groups. Out of the 27 evaluation units and 5 complex tar-

gets, there were 12 for which there was not a single valid and

informative crosslink (Table 4).

If we compare the targets in this subset (with at least one valid

and informative crosslink) that were modeled with and without

crosslink information, we see a strong shift to higher quality models

(90% of the time) (Figure 4). Even when considering all targets with an

TABLE 3 Relationship between confidence levels (first column)
and the number of crosslinks above each cutoff value within the set
of informative crosslinks for data from Smallx group

Confidence cutoff # Xlinks left
Percentage
of total

Percentage
valid

All (80% and up) 471 100 58.8

90% 336 71 67.0

95% 282 60 70.6

TABLE 4 List of targets and the
corresponding number of valid and
informative crosslinks available

Target All Valid Informative Valid-Inf Valid-inf/inform (%)

X0953S1D1 0 0 0 0 0.00

X0953S2 5 3 0 0 0.00

X0953S2D1 0 0 0 0 0.00

X0953S2D2 2 2 0 0 0.00

X0953S2D3 1 1 0 0 0.00

x0957S1D2 12 9 0 0 0.00

X0957S1D2 2 2 0 0 0.00

x0957S2D1 83 68 13 0 0.00

X0957S2D1 0 0 0 0 0.00

X0968S2D1 5 5 0 0 0.00

X0981D1 0 0 0 0 0.00

X0999D5 0 0 0 0 0.00

X0968S1D1 9 8 1 1 100.00

X0957S1 7 7 2 2 100.00

x0957S1D1 73 66 6 2 33.30

X0957S1D1 2 2 2 2 100.00

X0999D3 8 3 5 2 40.00

X0999D4 5 4 2 2 100.00

X0987D1 15 9 4 3 75.00

X0999D1 12 10 5 3 60.00

X0999D2 10 5 7 3 42.90

x0968S2D1 76 69 5 5 100.00

X0987D2 20 12 6 6 100.00

X0975D1 19 14 10 7 70.00

X0985D1 37 21 19 9 47.40

x0968S1D1 68 50 20 16 80.00

X0987 66 28 37 16 43.20

x0987D1 147 108 29 20 69.00

x0957S1 144 116 41 26 63.40

x0987D2 246 193 96 77 80.20

x0975D1 272 192 144 90 62.50

x0987 539 362 248 140 56.50
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without crosslink information, we observe a considerable shift toward

higher quality models (76% of the time). This suggest that crosslinks

connecting shorter sequential distances were also beneficial (76% of

the time) but when more informative crosslinks were provided it really

tilted the balance toward systematic improvement (90% of the time).

The corresponding average GDT_TS changes are 4.71 and 5.23,

respectively, but the actual range goes up to nearly 20 GDT_TS scores

(Figure 4).

If we focus on specific group performances, we need to address

the issue that groups submitted significantly different numbers of

targets (in the range of 3-27). This prevents general Z-score averaging

or summing approaches from being informative as the results will

depend on how many and which targets certain groups decided to

submit. In order to address significance, we performed a pairwise

comparison among all groups and assessed whether the performance

of one group was significantly better than that of the other group,

using a one-tailed Wilcoxon test at a significance level of 0.05.25,26

This comparison could not be performed between pairs of groups that

shared less than 2 common targets (Figure 5). A relatively clear split

appears between groups that systematically overperformed and

underperformed in this exercise (groups with many blue vs red

squares). From this ranking, we provide more detailed description

from the top two performers, groups 208 and 196, in the coming sec-

tions. Along with the performance of group 208, we also discuss that

of groups 288 and 492, which used a similar methodology and,

although did not perform as well regarding the accuracy of models,

they achieved much greater relative model quality improvement upon

introducing the crosslink information.

3.5 | Modeling with crosslinks by group 208 (KIAS-
Gdansk) and two related groups

The data-assisted-prediction protocol developed in the laboratory of

the KIAS-Gdansk group and described in reference 27 was used. The

main step of this protocol is extensive conformational search by using

F IGURE 4 Head to head comparison of changes in model
accuracy (ΔGDT_TS) for each group and each model. The total set of
targets is colored red, while the subset of targets with at least one
valid and informative crosslink is colored green

F IGURE 5 Comparison and ranking of group
performance in the subset of data-assisted targets
where at least one valid and informative crosslink
was provided. One-tailed Wilcoxon tests were
performed at a 0.05 significance cutoff between
all pairs of groups. Vertical axis lists groups,
ranked by performance from top to bottom. Blue:
vertical performed better than horizontal; Red:
vertical not significantly better than horizontal;
White: not enough shared targets between
groups; Gray: vertical and horizontal are the same
group
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the multiplexed replica-exchange molecular dynamics (MREMD)

method28,29 with the coarse-grained UNRES force field.30-32 MD33,34

and MREMD35 were implemented in UNRES in our earlier work.

A total of 48 replicas at 12 temperatures were run for each target

using 20 000 000 4.89 fs MD time steps, which correspond to about

0.1 ms of real time per trajectory because of time-scale extension in

UNRES.33 The conformational space of the simulations was restrained

by the crosslinks provided for the data-assisted targets. Use of the

coarse-grained approach makes the conformational search more effi-

cient as the time-scale is extended by at least three orders of magni-

tude due to averaging out most of the degrees of freedom.33 The

conformational ensembles thus obtained are clustered into five fami-

lies, from which conformations closest to cluster centers are selected

and converted to all-atom representations to give the final models.

We used both the non-specific36 and specific3 restraints, corres-

ponding to the Smallx and BigX type targets, respectively. Non-

specific crosslink restraints were used together with specific

crosslink restraints for most of the targets. For nonspecific restraints

provided by the Rappsilber lab,10,36 a bounded flat-bottom function

was used37,38 (Equation 1).

V dð Þ=

A
d−d1ð Þ4

σ4 + d−d1ð Þ4 ford< dl

0 fordl ≤ d< du

A
d−duð Þ4

σ4 + d−duð Þ4
ford> du

8>>>>>><
>>>>>>:

ð1Þ

where d is the distance between the Cα atoms of the two crosslinked

residues in the computed structure and dl and du are the lower and

upper contact-distance boundaries, respectively (we set dl = 2.5 Å,

du = 25 Å), σ (set at 1 Å) is the width of the transition region between

zero and the maximum restraint height, and A is the height of the

restraint well, which we assume to be equal to the confidence of a

contact, which was taken from the XLMS-information files deposited

at the CASP13 web page. This function generates no gradient, if a

restraint is grossly not satisfied, which naturally eliminates the incom-

patible XLMS restraints from consideration.

The specific restraints provided by the Leitner lab3 were incorpo-

rated in a form of statistical potentials derived based on the data in

figure 3 of reference 3. The functional form is given by Equation 2.

VX dð Þ= −Aln αX + βX
d−δXð Þ2
2σ2X

" #
exp −

d−δXð Þ2
2σ2X

" #( )
ð2Þ

where d is the distance between the UNRES side-chain centers of the

two crosslinked residues, X denotes the type of crosslink (ZL, PDH or

DSS),3 and αX, βX, δX, and σX are the parameters obtained by least-

squares fitting of the statistical potentials of mean force derived from

the distributions in figure 3 of reference 3, and A is the confidence of

a crosslink restraint. The parameters of the expression of Equation 2

were obtained by nonlinear least squares fitting V(x) to the logs of the

distributions from figure 3 of reference 3, as given by Equation (3)

minΦ αX:βX:δX,σXð Þ=
X
k

PX;k−exp −βVX dk;αX:βX:δX,σXð Þ½ �f g2 ð3Þ

where PX;k is the distribution value for the cross link of type X at the

kth bin, dk is the distance at the center of that bin, and β = 1/RT,

R being the universal gas constant, and T the absolute temperature

set at T = 298 K. The experimental and fitted PX are plotted in

Figure 6.

The XLMS restraints were applied together with the SAXS or

SANS restraints, which were available for all crosslink-assisted targets.

Data of both kinds were used because the objective of CASP exer-

cises is to produce the best predictions possible and, consequently,

the organizers encouraged the predictors to use all available data

while processing the data-assisted targets. The starting structures

were the final models obtained in the non-data-assisted mode by the

respective group.

The SAXS/SANS restraints were incorporated in the form of a

maximum-likelihood function introduced in reference 27, which is

given by Equation 4.

VSAXS = −

ðdmax

0

PSAXS rð ÞlnPcalc rð Þdrffi −βr
XM
i=1

PSAXS rkð ÞlnPcalc rkð Þ ð4Þ

where r is the distance, rk is the distance at the center of the kth bin of

the histogram of the distance distribution from SAXS measurements,

M is the number of bins, PSAXS(r) is the value of the probability distribu-

tion determined by SAXS at r, Pcalc(r) is the value of the probability dis-

tribution calculated from simulations at r, dmax is the maximum distance

in the molecule, and Δr is the bin size taken as 1 Å. The SAXS-derived

values of the probability distribution, PSAXS(r), were only normalized and

no quality check was performed. and Pcalc is defined by Equation 5

F IGURE 6 Comparison of the experimental (reference 3; bars)
and fitted by using Equation 3 (lines) distributions of Cα-Cα distances
in model proteins for four different types of crosslinks: zero-length
crosslinks (ZL; orange), adipic acid dihydrazide (ADH; green; not used
in CASP13), pimelic acid dihydrazide (PDH; purple), and disuccinimidyl
suberate (DSS; blue)
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Pcalc rkð Þ= 1
A

X
i

X
j< i

exp −
rij− rk
� �2

2σ2ij

" #
ð5Þ

with

A= Δr
XM
k =1

X
i

X
j< i

exp −
rij− rk
� �2

2σ2ij

" #
ð6Þ

σij =
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2i + σ

2
j

q
ð7Þ

where rij is the distance between the Cα atoms of residues i and j in

the calculated conformation, σij is the SD of the respective Gaussian,

σi and σj being the Stokes' radii of residues i and j, respectively; in this

work, we use the values as in Langevin-dynamics simulations with

UNRES,33 s is the radius scaling factor set at s = 5, and A is the factor

normalizing the calculated probability to 1.

We submitted predictions for 11 out of 12 crosslink-assisted tar-

gets (all except for X0981) from three UNRES-related groups: UNRES

(group 288; no knowledge-based information except for secondary-

structure prediction), KIAS-Gdansk (group 208; homology-assisted

modeling with UNRES), and wf-BAKER-UNRES (group 492; contact-

assisted modeling with UNRES). The GDT_TS improvement between

un-assisted and crosslink-assisted models is moderate (Figure 7), with

many models being deteriorated for the KIAS-Gdansk models but sig-

nificant for the UNRES and wf-BAKER-UNRES models, which can be

explained by better quality of the crosslink-unassisted KIAS-Gdansk

models due to the introduction of homology-based restraints. It can

also be seen that the improvement is more significant for predictions

with only specific crosslinks than for those with non-specific and spe-

cific crosslinks. The reason for this difference in model quality is that

many restraints from non-specific crosslinks are invalid or ambiguous.

The most significant qualitative improvement of the models was

obtained by the UNRES group for targets T0968s1 and T0968s2

following the introduction of specific crosslink restraints (Figure 8). It

should be noted that prediction simulations were run for the whole

tetramer (dimer of dimers) and subunit coordinates were extracted

from the final models. It can be seen that, for X0968s1, specific-

crosslink information resulted in reorientation of the α-helical

section of the subunit with respect to the β-sheet, resulting in

native-like orientation of these sections. Likewise, unassisted

UNRES simulations resulted in orthogonal packing of two β-sheets

forming the structure of T0968s2, while introducing specific cross-

links reduced the angle between the β-sheet sections, as also

observed in the experimental structure.

3.6 | Modeling with crosslinks by group
196 (Grudinin) and related group 135

In our approach, we integrated information from crosslink experiments

to a combination of a physics-based and a knowledge-based model. Let

us first consider two residues, represented by the corresponding Cα,

for which the XL experiment has detected a putative contact. First, we

F IGURE 7 Scatter plot of the differences in GDT_TS values
of the best models of the assisted and regular predictions as a
function of the highest GDT_TS corresponding to the regular

prediction of the respective group for the specific crosslink-
assisted (X; filled symbols) and nonspecific only or nonspecific plus
specific crosslink-assisted (x; open symbols) prediction of the
UNRES (group 288, red circles), wf-BAKER-UNRES(group
492, green triangles), and KIAS-Gdansk(group 208, blue squares)
groups, respectively

(A)

(B)

F IGURE 8 Cartoon drawings of the best UNRES (left, blue) and
best specific crosslink-assisted UNRES (right, dark orange) models of
the first (T0968 s1; A) and second (T0968 s2; B) subunit of target
T0968 superposed on the respective portions of the experimental
structure of CASP13 target H0968 (gray)
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estimated the probability of the presence of one Cα atom with respect

to the distance to the second Cα atom. We approximated this probabil-

ity with a Gaussian distribution, with the center and the SD specific to

each type of XL experiment.3 Figure 9 shows these distributions fitted

to the data provided in Leitner et al.3 We could not fit data from

the zero-length (ZL) experiments with a single Gaussian, and thus

used as a sum of two Gaussians. We then made a Boltzmann-like

hypothesis and considered that there is pseudo-potential associ-

ated with each of the XL constraints, whose value is given by the

logarithm of the probability of a certain Cα-Cα distance. Since we

made the hypothesis of a Gaussian distribution of one alpha carbon

with respect to the other, this pseudo-potential is a harmonic, with

the exception of ZL potentials that we did not have in the experi-

mental CASP13 data. We collected initial models from CASP13

stage-2 server submissions and ranked them using the SBROD

orientation-dependent backbone-only scoring function.39 We

picked the top five models and refined them iteratively using a

gradient-based optimization. When moving the model atoms along

the raw gradient of the XL pseudo-potential fXL, we observed that

the bonds may break, unrealistic local topology may occur, and as a

result, the initial secondary structure can get severely distorted. To

preserve the local model topology, we added an energy term from

the Gaussian network model, represented by the Hessian matrix H,

whose equilibrium is always at the current structure. As a result, we

were iteratively solving the following problem with respect to

atomic displacements Δx,

minΔx
1
2
ΔxTHΔx+ λΔxTfXL ð8Þ

which can be transformed to a linear system of equations. The

coefficient λ determines the relative importance of XL restraints

with respect to the Gaussian network model. Its value was

adjusted such that the final structure had a meaningful overall

RMSD difference compared to the initial one (on average of several

Å). The Gaussian network model was computed by the NOLB

library40 and is often used in the normal mode analysis. It allows

large-amplitude realistic motions, with marginal modification of the

local topology. However, the accumulation of small perturbations

of the local topology over the course of several iterations may still

produce unrealistic final structures. To tackle this problem, we

added to our iterative process an additional minimization of a sim-

ple force-field containing bond length, bond angle, and van der

Waals interaction terms. We continued the refinement until the

convergence of the total energy.

We did not use additional SAXS or SANS restraints in our proto-

col, even though these were available for most of crosslink-assisted

targets.

Similarly to the UNRES groups, we also submitted predictions

for 11 out of 12 crosslink-assisted targets (except for X0953). We

used two slightly different protocols. The first one submitted by

the Grudinin group (196) ranked final models by the XL energy

restraints. We applied it to 11 out of 12 targets. The second one,

submitted by the SBROD group (135), rescored the final predic-

tions with the SBROD score. This one was applied to only four

targets. Figure 10 presents the GDT_TS differences between regu-

lar and XL-assisted predictions for the two groups. We can draw

several conclusions from this plot. First, rescoring of the final

models with the knowledge-based SBROD potential seems to help

select models with slightly better quality. On the other hand, try-

ing to satisfy the XL restraints as much as possible may improve

the model quality more significantly but very often results in

models of lower quality compared to the starting templates. This

is likely caused by the ambiguity of the XL restraints that to some

extent might reflect the in-solution dynamics of the investigated

protein targets.

F IGURE 9 Distribution of Cα-Cα distances in model proteins for
four different types of crosslink experiments. Data points for pimelic
acid dihydrazide (PDH), disuccinimidyl suberate (DSS), adipic acid
dihydrazide (ADH, not used in CASP13), as crosslinking reagents, and
zero-length crosslinks (ZL) are shown. Solid lines represent Gaussian
fits to the experimental data points. The ZL fit is described with a sum
of two Gaussians. A logarithm of the presented fits is used as a
pseudo potential. The bin size of 3 Å to calculate the probabilities was
adapted from Leitner et al3

F IGURE 10 Scatter plot of the differences in GDT_TS values
between the first-ranked models of the assisted and regular
predictions as a function of the GDT_TS value corresponding to the
first model of the regular prediction. Results of two groups are shown,
Grudinin with red circles (group 196), and SBROD with blue crosses
(group 135)
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3.7 | Assessing complexes

There will be a separate article devoted to assessing the modeling

of complexes with data assistance in this issue of the journal. We

just briefly summarize here the narrow category of chemical-cross-

links-assisted complex modeling. In general, we followed the same

evaluation as before for single chain targets, but in adjusting to the

presence of multiple chains, we do not define informative cross-

links. Also, distances were measured directly in Euclidean space as

opposed to considering the accessible protein surface as before.

The number of targets was very limited, at 7. We compared the

improvement to models in terms of LDDT measure20 with and

without crosslinking assistance within the subcategory of assisted

modeling and also against the entire CASP general category

(Figure 11). Out of the seven targets, two had no valid crosslinks,

that is, 0% on the figure, (interchain crosslinks were connecting dis-

tances longer than 30 Å), and one had no interchain crosslinks

determined, that is, No, on the figure. Out of the remaining four targets,

three improved upon adding crosslink information (Figure 11). The few

available examples prevent us from making statistically strong state-

ments but overall the general trend on these few cases is that

modeling complexes benefits from crosslink information, even when

compared to the general modeling category of CASP (blue marks on

figure) where 99 groups submitted models without assistance of

experimental data.

4 | DISCUSSION

4.1 | Comparing crosslinks

On the subset of targets where crosslinks were provided by both

experimental groups, we compared the accuracy of models for the

same targets by focusing on the single best model produced by any

group given the same set of crosslink information (Figure 12). There

seems to be a clear tendency that more accurate models were gener-

ated using BigX group generated crosslinks. Reasons for this can be

speculated upon, however, solid conclusions from the comparison of

different crosslink data sets are difficult for two main reasons: 1. Dif-

ferent sample history. Protein samples were analyzed first by the BigX

group and the remnants were forwarded to the Smallx group for a

subsequent analysis. 2. Biased data release. Data from both groups

were made available at different time points (BigX generated cross-

links released weeks-months before Smallx) and for different time

durations (eg, for X0975 it was 21 days, compared to 14 days for

x0975).

F IGURE 11 Accuracy of protein complex modeling with and
without XL-MS data. Accuracy (LDDT) of best XL-MS-assisted model
(vertical axis) vs the best TS model (without XL-MS information) from
the corresponding assisted group (gray) or all structure modeling
groups (blue). Gray data were selected from a subset of assisted
modeling groups that submitted models both with and without
crosslink assistance. Information about Xlinks are added to blue
points: % valid or NO suitable crosslinks available

F IGURE 12 Accuracy of structure
modeling with XL-MS data utilizing
different sources. Head-to-head
comparison of accuracies (GDT_TS) of
best models from assisted modeling
groups using data from BigX group (x-axis)
vs Smallx group (y-axis)
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4.2 | Comparing the best crosslink-assisted models
vs the best models

In our analysis so far (except analysis on complex modeling), we

made comparisons among the 14 groups that submitted crosslink-

assisted models and we drew conclusions about the relative

improvements within this group. While systematic improvements

were observed, the performance of these groups is primarily limited

by their ability to sample correct conformations for the target pro-

teins. The results are less impressive if we compare the accuracy of

crosslink-assisted models to those in the general competition

where 99 groups submitted predictions (Figure 13). Clearly, the

general category decidedly outperforms the 14 groups even though

they were not using crosslinking data. This contrast can be

explained in a broader context, if we consider that the last three

CASP meetings have witnessed a renaissance of predicting and

incorporating predicted contacts in structure modeling, which cul-

minated (so far) in CASP13 with never-before-seen contact predic-

tion accuracies and correspondingly highly accurate models even in

the free modeling category. Obviously, the purpose of using

predicted contacts and experimental crosslinks is very similar, but

one could argue that contact prediction, if accurate, provides a

higher resolution information due to the shorter spatial distances

of direct residue interactions and without the experimental limita-

tion of the residues that can be considered.

Besides a general comparison between the 99 groups that sub-

mitted targets in the general category and the 14 that submitted in

the data-assisted category, it is difficult to assess the possibility of

additional synergy. The 14 groups in general were not among the

top performers in the general modeling category, and therefore it is

unclear how much they could have improved by using a more accu-

rate starting conformation. While overall, the general modeling cat-

egory models outperformed the XLMS models, there were

anecdotal bright spots, where the best models were tied in accu-

racy and at least in one case (X987D2) when the data-assisted

model was better than any model from the general category

(Figure 13). While statistically significant results cannot be reported

for XLMS-assisted complex modeling due to the small number of

cases, the majority of complexes were more accurate than any of

the general category results. A further refinement of the experi-

mental procedures to generate crosslinks and of the algorithms that

make use of experimentally derived distance information should

increase the relevance of the method even for single proteins. The

results from the data-assisted modeling category from CASP13

should help to direct such efforts.

A more thorough review of the general impact of data-assisted

CASP experiments is both necessary and opportune but is beyond the

scope of this article focusing solely on CASP13. It will therefore be

the subject of a dedicated article to be published elsewhere.
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displays targets with at least one valid and informative crosslink. The
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model (X987D2 by group 000) outperformed every single regular
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