295 research outputs found

    Advances concerning aliskiren, direct renin inhibitor and aliskiren-hydrochlorothiazide

    Full text link
    peer reviewedL’aliskiren (Rasilez®), inhibiteur direct de la rénine, est actuellement indiqué dans le traitement de l’hypertension artérielle essentielle, en monothérapie ou en association, notamment avec l’hydrochlorothiazide (Rasilez HCT®). Il peut également être utilisé pour compléter le blocage du système rénine-angiotensine-aldostérone (SRAA) en combinaison avec un inhibiteur de l’enzyme de conversion de l’angiotensine (IEC) (ou éventuellement un antagoniste des récepteurs AT1 ou ARA). Il reste, en effet, de la place pour des agents qui s’opposeraient encore mieux que les IEC ou les ARA à la progression de la néphropathie diabétique. Dans ce contexte particulier, actuellement, le double blocage du SRAA offre probablement une meilleure possibilité de frein que le simple blocage, mais s’avère être de manipulation plus dangereuse. L’aliskiren pourrait trouver une place privilégiée pour optimiser le blocage du SRAA si les études en cours confirment les résultats préliminaires favorables. Cet article résume les données actualisées concernant les répercussions biochimiques du mode d’action spécifique de cette molécule, en particulier les interférences possibles liées à l’augmentation des taux de rénine/pro-rénine, ainsi que les résultats des essais cliniques récents, non seulement dans le domaine de l’hypertension artérielle, mais aussi du diabète sucré, de l’insuffisance rénale et de la cardiologie. Les objectifs et les modalités de réalisation de la grande étude de morbi-mortalité ALTITUDE seront aussi brièvement présentés.Aliskiren (Rasilez®), a direct renin inhibitor, is currently indicated for the treatment of essential hypertension, as monotherapy or in combination, especially with hydrochlorothiazide (Rasilez HCT®). It may also be use to obtain a more complete blockade of the renin-angiotensin-aldosterone system (RAAS) when it is associated with an angiotensin converting enzyme inhibitor (ACEI) (or an AT1 angiotensin receptor antagonist) (ARA). There is some room for agents that may be more efficacious in reducing the progression of diabetic nephropathy than ACEI or ARA. In this context, the dual blockade of RAAS most probably offers a better efficacy than the simple blockade, but also exposes to a higher risk. Should ongoing trials confirm the preliminary favourable results, aliskiren might reach a forefront position among the armamentarium now available to optimize the RAAS blockade. The present article will summarize advances concerning the biochemical effects of the specific mode of action of aliskiren, especially the potential interferences related to increased renin/pro-renin levels, as well as results of recent clinical trials, not only in hypertension, but also in the fields of diabetes, renal insufficiency and cardiology. The objectives and design of the landmark study ALTITUDE will also be briefly presented

    The quest for planets around subdwarfs and white dwarfs from Kepler space telescope fields: Part I. Techniques and tests of the methods

    Get PDF
    In this study, we independently test the presence of an exoplanet around the binary KIC 9472174, which is composed of a red dwarf and a pulsating type B subdwarf. We also present the results of our search for Jupiter-mass objects orbiting near to the eclipsing binary KIC 7975824, which is composed of a white dwarf and type B subdwarf, and the pulsating white dwarf KIC 8626021. The goal is to test analytical techniques and prepare the ground for a larger search for possible substellar survivors on tight orbits around post-common envelope binaries and stars at the end of their evolution, that is, extended horizontal branch stars and white dwarfs. We, therefore, mainly focus on substellar bodies orbiting these stars within the range of the host's former red-giant or asymptotic-giant phase envelopes. Due to the methods we use, the quest is restricted to single-pulsating type B subdwarf and white dwarf stars and short-period eclipsing binaries containing a white dwarf or a subdwarf component. Results. Based on the three objects studied in this paper, we demonstrate that these methods can be used to detect giant exoplanets orbiting around pulsating white dwarf or type B subdwarf stars as well as short-period binary systems, at distances which fall within the range of the former red-giant envelope of a single star or the common envelope of a binary. Using our analysis techniques, we reject the existence of a Jupiter-mass exoplanet around the binary KIC 9472174 at the distance and orbital period previously suggested in the literature. We also found that the eclipse timing variations observed in the binary might depend on the reduction and processing of the Kepler data. The other two objects analyzed in this work do not have Jupiter mass exoplanets orbiting within 0.7 - 1.4 AU from them, or larger-mass objects on closer orbits (the given mass limits are minimum masses).Comment: 8 page

    Revisiting the theoretical DBV (V777 Her) instability strip: the MLT theory of convection

    Get PDF
    We reexamine the theoretical instability domain of pulsating DB white dwarfs (DBV or V777 Her variables). We performed an extensive gg-mode nonadiabatic pulsation analysis of DB evolutionary models considering a wide range of stellar masses, for which the complete evolutionary stages of their progenitors from the ZAMS, through the thermally pulsing AGB and born-again phases, the domain of the PG1159 stars, the hot phase of DO white dwarfs, and then the DB white dwarf stage have been considered. We explicitly account for the evolution of the chemical abundance distribution due to time-dependent chemical diffusion processes. We examine the impact of the different prescriptions of the MLT theory of convection and the effects of small amounts of H in the almost He-pure atmospheres of DB stars on the precise location of the theoretical blue edge of the DBV instability strip.Comment: Proceedings, 16th European White Dwarf Workshop, Barcelona, 200

    The quest for planets around subdwarfs and white dwarfs from Kepler space telescope fields. I. Techniques and tests of the methods

    Get PDF
    Context. In this study, we independently test the presence of an exoplanet around the binary KIC 9472174, which is composed of a red dwarf and a pulsating type B subdwarf. We also present the results of our search for Jupiter-mass objects orbiting near to the eclipsing binary KIC 7975824, which is composed of a white dwarf and type B subdwarf, and the pulsating white dwarf KIC 8626021. Aims: The goal is to test analytical techniques and prepare the ground for a larger search for possible substellar survivors on tight orbits around post-common envelope binaries and stars at the end of their evolution, that is, extended horizontal branch stars and white dwarfs. We, therefore, mainly focus on substellar bodies orbiting these stars within the range of the host's former red-giant or asymptotic-giant phase envelopes. Due to the methods we use, the quest is restricted to single-pulsating type B subdwarf and white dwarf stars and short-period eclipsing binaries containing a white dwarf or a subdwarf component. Methods: Our methods rely on the detection of exoplanetary signals hidden in photometric time series data from the Kepler space telescope, and they are based on natural clocks within the data itself, such as stellar pulsations and eclipse times. The light curves are analyzed using Fourier transforms, time-delays, and eclipse timing variations. Results: Based on the three objects studied in this paper, we demonstrate that these methods can be used to detect giant exoplanets orbiting around pulsating white dwarf or type B subdwarf stars as well as short-period binary systems, at distances which fall within the range of the former red-giant envelope of a single star or the common envelope of a binary. Using our analysis techniques, we reject the existence of a Jupiter-mass exoplanet around the binary KIC 9472174 at the distance and orbital period previously suggested in the literature. We also found that the eclipse timing variations observed in the binary might depend on the reduction and processing of the Kepler data. The other two objects analyzed in this work do not have Jupiter mass exoplanets orbiting within 0.7-1.4 AU from them, or larger-mass objects on closer orbits (the given mass limits are minimum masses). Conclusions: Depending on the detection threshold of the time-delay method and the inclination of the exoplanet orbit toward the observer, data from the primary Kepler mission allows for the detection of bodies with a minimum of ~1 Jupiter-mass orbiting these stars at ~1 AU, while data from the K2 mission extends the detection of objects with a minimum mass of ~7 Jupiter-mass on ~0.1 AU orbits. The exoplanet mass and orbital distance limits depend on the length of the available photometric time series

    UVSat: a concept of an ultraviolet/optical photometric satellite

    Full text link
    Time-series photometry from space in the ultraviolet can be presently done with only a few platforms, none of which is able to provide wide-field long-term high-cadence photometry. We present a concept of UVSat, a twin space telescope which will be capable to perform this kind of photometry, filling an observational niche. The satellite will host two telescopes, one for observations in the ultraviolet, the other for observations in the optical band. We also briefly show what science can be done with UVSat.Comment: 6 pages, 2 figures, accepted for publication in the Proceedings of the PAS (Proc. of the 2nd BRITE Science conference, Innsbruck

    Discovery of New Ultracool White Dwarfs in the Sloan Digital Sky Survey

    Full text link
    We report the discovery of five very cool white dwarfs in the Sloan Digital Sky Survey (SDSS). Four are ultracool, exhibiting strong collision induced absorption (CIA) from molecular hydrogen and are similar in color to the three previously known coolest white dwarfs, SDSS J1337+00, LHS 3250 and LHS 1402. The fifth, an ultracool white dwarf candidate, shows milder CIA flux suppression and has a color and spectral shape similar to WD 0346+246. All five new white dwarfs are faint (g > 18.9) and have significant proper motions. One of the new ultracool white dwarfs, SDSS J0947, appears to be in a binary system with a slightly warmer (T_{eff} ~ 5000K) white dwarf companion.Comment: 15 pages, 3 figures, submitted to ApJL. Higher resolution versions of finding charts are available at http://astro.uchicago.edu/~gates/findingchart

    Boron Abundances in Main Sequence B-type Stars: A Test of Rotational Depletion during Main Sequence Evolution

    Get PDF
    Boron abundances have been derived for seven main sequence B-type stars from HST STIS spectra around the B III 2066 A line. In two stars, boron appears to be undepleted with respect to the presumed initial abundance. In one star, boron is detectable but it is clearly depleted. In the other four stars, boron is undetectable implying depletions of 1 to 2 dex. Three of these four stars are nitrogen enriched, but the fourth shows no enrichment of nitrogen. Only rotationally induced mixing predicts that boron depletions are unaccompanied by nitrogen enrichments. The inferred rate of boron depletion from our observations is in good agreement with these predictions. Other boron-depleted nitrogen-normal stars are identified from the literature. Also, several boron-depleted nitrogen-rich stars are identified, and while all fall on the boron-nitrogen trend predicted by rotationally-induced mixing, a majority have nitrogen enrichments that are not uniquely explained by rotation. The spectra have also been used to determine iron-group (Cr, Mn, Fe, and Ni) abundances. The seven B-type stars have near solar iron-group abundances, as expected for young stars in the solar neighborhood. We have also analysed the halo B-type star, PG0832+676. We find [Fe/H] = -0.88 +/- 0.10, and the absence of the B III line gives the upper limit [B/H]<2.5. These and other published abundances are used to infer the star's evolutionary status as a post-AGB star.Comment: 31 pages, 14 figures. accepted to Ap

    UBVI and Ha Photometry of the h & chi Persei cluster

    Full text link
    UBVI and Ha photometry is presented for 17319 stars in vicinity of the young double cluster h & chi Persei. Our photometry extends over a 37arcmin x 1arcdeg field centered on the association. We construct reddening contours within the imaged field. We find that the two clusters share a common distance modulus of 11.75±\pm0.05 and ages of log age(yr) = 7.1±\pm0.1. From the V-Ha colour, a measure of the Ha emission strength, we conduct a survey for emission line objects within the association. We detect a sample of 33 Be stars, 8 of which are new detections. We present a scenario of evolutionary enhancement of the Be phenomenon to account for the peak in Be fraction towards the top of the main-sequence in the population of h & chi Persei and similar young clusters.Comment: 20 pages, 9 figures, AJ Jul

    LOTIS, Super-LOTIS, SDSS and Tautenburg Observations of GRB 010921

    Get PDF
    We present multi-instrument optical observations of the High Energy Transient Explorer (HETE-2)/Interplanetary Network (IPN) error box of GRB 010921. This event was the first gamma ray burst (GRB) localized by HETE-2 which has resulted in the detection of an optical afterglow. In this paper we report the earliest known observations of the GRB010921 field, taken with the 0.11-m Livermore Optical Transient Imaging System (LOTIS) telescope, and the earliest known detection of the GRB010921 optical afterglow, using the 0.5-m Sloan Digital Sky Survey Photometric Telescope (SDSS PT). Observations with the LOTIS telescope began during a routine sky patrol 52 minutes after the burst. Observations were made with the SDSS PT, the 0.6-m Super-LOTIS telescope, and the 1.34-m Tautenburg Schmidt telescope at 21.3, 21.8, and 37.5 hours after the GRB, respectively. In addition, the host galaxy was observed with the USNOFS 1.0-m telescope 56 days after the burst. We find that at later times (t > 1 day after the burst), the optical afterglow exhibited a power-law decline with a slope of α=1.75±0.28\alpha = 1.75 \pm 0.28. However, our earliest observations show that this power-law decline can not have extended to early times (t < 0.035 day).Comment: AASTeX v5.x LaTeX 2e, 6 pages with 2 postscript figures, will be submitted to ApJ Letter
    • …
    corecore