15 research outputs found

    Evaluation of Upper Extremity Movement Characteristics during Standardized Pediatric Functional Assessment with a Kinect®-based Markerless Motion Analysis System

    Get PDF
    A recently developed and evaluated upper extremity (UE) markerless motion analysis system based on the Microsoft® Kinect® has potential for improving functional assessment of patients with hemiplegic cerebral palsy. 12 typically-developing adolescents ages 12-17 were evaluated using both the Kinect-based system and the Shriners Hospitals for Children Upper Extremity Evaluation (SHUEE), a validated measure of UE motion. The study established population means of UE kinematic parameters for each activity. Statistical correlation analysis was used to identify key kinematic metrics used to develop automatic scoring algorithms. The Kinect motion analysis platform is technically sound and can be applied to standardized task-based UE evaluation while providing enhanced sensitivity in clinical analysis and automation through scoring algorithms

    Upper Extremity Biomechanical Model for Evaluation of Pediatric Joint Demands during Wheelchair Mobility

    Get PDF
    Current methods for evaluating upper extremity (UE) dynamics during pediatric wheelchair use are limited. We propose a new model to characterize UE joint kinematics and kinetics during pediatric wheelchair mobility. The bilateral model is comprised of the thorax, clavicle, scapula, upper arm, forearm, and hand segments. The modeled joints include: sternoclavicular, acromioclavicular, glenohumeral, elbow and wrist. The model is complete and is currently undergoing pilot studies for clinical application. Results may provide considerable quantitative insight into pediatric UE joint dynamics to improve wheelchair prescription, training and long term care of children with orthopaedic disabilities

    Upper Extremity Biomechanics of Children with Spinal Cord Injury during Wheelchair Mobility

    Get PDF
    While much work is being done evaluating the upper extremity joint dynamics of adult manual wheelchair propulsion, limited work has examined the pediatric population of manual wheelchair users. Our group used a custom pediatric biomechanical model to characterize the upper extremity joint dynamics of 12 children and adolescents with spinal cord injury (SCI) during wheelchair propulsion. Results show that loading appears to agree with that of adult manual wheelchair users, with the highest loading primarily seen at the glenohumeral joint. This is concerning due to the increased time of wheelchair use in the pediatric population and the impact of this loading during developmental years. This research may assist clinicians with improved mobility assessment methods, wheelchair prescription, training, and long-term care of children with orthopaedic disabilities

    Evaluation of Pediatric Manual Wheelchair Mobility Using Advanced Biomechanical Methods

    Get PDF
    There is minimal research of upper extremity joint dynamics during pediatric wheelchair mobility despite the large number of children using manual wheelchairs. Special concern arises with the pediatric population, particularly in regard to the longer duration of wheelchair use, joint integrity, participation and community integration, and transitional care into adulthood. This study seeks to provide evaluation methods for characterizing the biomechanics of wheelchair use by children with spinal cord injury (SCI). Twelve subjects with SCI underwent motion analysis while they propelled their wheelchair at a self-selected speed and propulsion pattern. Upper extremity joint kinematics, forces, and moments were computed using inverse dynamics methods with our custom model. The glenohumeral joint displayed the largest average range of motion (ROM) at 47.1° in the sagittal plane and the largest average superiorly and anteriorly directed joint forces of 6.1% BW and 6.5% BW, respectively. The largest joint moments were 1.4% body weight times height (BW × H) of elbow flexion and 1.2% BW × H of glenohumeral joint extension. Pediatric manual wheelchair users demonstrating these high joint demands may be at risk for pain and upper limb injuries. These evaluation methods may be a useful tool for clinicians and therapists for pediatric wheelchair prescription and training

    Effects of Spinal Fusion for Idiopathic Scoliosis on Lower Body Kinematics During Gait

    Get PDF
    Objectives The purpose of this study was to compare gait among patients with scoliosis undergoing posterior spinal fusion and instrumentation (PSFI) to typically developing subjects and determine if the location of the lowest instrumented vertebra impacted results. Summary of Background Data PSFI is the standard of care for correcting spine deformities, allowing the preservation of body equilibrium while maintaining as many mobile spinal segments as possible. The effect of surgery on joint motion distal to the spine must also be considered. Very few studies have addressed the effect of PSFI on activities such as walking and even fewer address how surgical choice of the lowest instrumented vertebra (LIV) influences possible motion reduction. Methods Individuals with scoliosis undergoing PSFI (n = 38) completed gait analysis preoperatively and at postoperative years 1 and 2 along with a control group (n = 24). Comparisons were made with the control group at each time point and between patients fused at L2 and above (L2+) versus L3 and below (L3–). Results The kinematic results of the AIS group showed some differences when compared to the Control Group, most notably decreased range of motion (ROM) in pelvic tilt and trunk lateral bending. When comparing the LIV groups, only minor differences were observed, and the results showed decreased coronal trunk and pelvis ROM at the one-year visit and decreased hip rotation ROM at the two-year visit in the L3– group. Conclusions Patients with AIS showed decreased ROM preoperatively with further decreases postoperatively. These changes remained relatively consistent following the two-year visit, indicating that most kinematic changes occurred in the first year following surgery. Limited functional differences between the two LIV groups may be due to the lack of full ROM used during normal gait, and future work could address tasks that use greater ROM

    Kinematic foot types in youth with pes planovalgus secondary to cerebral palsy

    Get PDF
    Background Kinematic variability of the foot and ankle segments exists during ambulation among individuals with pes planovalgus (PPV) secondary to cerebral palsy (CP). Clinicians have previously recognized such variability through classification schemes to identify subgroups of individuals, but have been unable to identify kinematic foot types. Research question The purpose of this work was to identify kinematic foot types among children with PPV secondary to CP using 3-dimensional multi-segment foot and ankle kinematics during gait as inputs for principal component analysis (PCA) and K-means cluster analysis. Methods In a single assessment session, multi-segment foot and ankle kinematics using the Milwaukee Foot Model (MFM) were collected in 31 children/adolescents with pes planovalgus (49 feet) and 16 typically developing (TD) children/adolescents (31 feet). PCA was used as a data reduction technique on 34 kinematic variables. K-means cluster analysis was performed on the identified principal components (PCs) and one-way analyses of variance (ANOVA) was done to determine the effect of subgroup membership on PC scores. Results The PCA reduced the kinematic variables to seven PCs which accounted for 91% of the total variance. Six distinct kinematic foot types were identified by the cluster analysis. The foot types showed unique kinematic characteristics in both the hindfoot and forefoot. Significance This study provides further evidence of kinematic variability in the foot and ankle during ambulation associated with pes planovalgus secondary to CP. The specific contributions of the hindfoot and forefoot would not have been detected using a single segment foot model. The identification of kinematic foot types with unique foot and ankle characteristics has the potential to improve treatment since patients within a foot type are likely to benefit from similar intervention(s)

    PANC Study (Pancreatitis: A National Cohort Study): national cohort study examining the first 30 days from presentation of acute pancreatitis in the UK

    Get PDF
    Abstract Background Acute pancreatitis is a common, yet complex, emergency surgical presentation. Multiple guidelines exist and management can vary significantly. The aim of this first UK, multicentre, prospective cohort study was to assess the variation in management of acute pancreatitis to guide resource planning and optimize treatment. Methods All patients aged greater than or equal to 18 years presenting with acute pancreatitis, as per the Atlanta criteria, from March to April 2021 were eligible for inclusion and followed up for 30 days. Anonymized data were uploaded to a secure electronic database in line with local governance approvals. Results A total of 113 hospitals contributed data on 2580 patients, with an equal sex distribution and a mean age of 57 years. The aetiology was gallstones in 50.6 per cent, with idiopathic the next most common (22.4 per cent). In addition to the 7.6 per cent with a diagnosis of chronic pancreatitis, 20.1 per cent of patients had a previous episode of acute pancreatitis. One in 20 patients were classed as having severe pancreatitis, as per the Atlanta criteria. The overall mortality rate was 2.3 per cent at 30 days, but rose to one in three in the severe group. Predictors of death included male sex, increased age, and frailty; previous acute pancreatitis and gallstones as aetiologies were protective. Smoking status and body mass index did not affect death. Conclusion Most patients presenting with acute pancreatitis have a mild, self-limiting disease. Rates of patients with idiopathic pancreatitis are high. Recurrent attacks of pancreatitis are common, but are likely to have reduced risk of death on subsequent admissions. </jats:sec

    Equinovarus in Cerebral Palsy

    No full text
    Equinovarus foot and ankle deformity is most common in children diagnosed with hemiplegic cerebral palsy (CP). A child with equinovarus is limited in gross motor functional skills which can lead to further disability. The cause of this deformity is believed to result from a combination of neuromuscular and biomechanical impairments secondary to an insult to the developing central nervous system. Non-phasic activity of the extrinsic musculature surrounding the foot and ankle create muscular imbalance, atypical positioning and motion of the foot and ankle during locomotion. This dissertation consisted of three experiments that provided fundamental insights into the segmental foot and ankle kinematics during locomotion of children with equinovarus secondary to hemiplegic CP. The first experiment showed that temporal-spatial parameters and triaxial hindfoot kinematics were not affected by the presence of a fine wire electrode inserted into the posterior tibialis. Thus, simultaneous collection of segmental foot and ankle kinematics and fine wire EMG data of the posterior tibilais is acceptable for surgical decision making in this population. The second experiment used a combination of segmental foot and ankle kinematics, principal component analysis (PCA), and K-means cluster analysis to examine the gait deviations associated with the equinovarus foot. Five clinically recognizable subgroups were identified with unique segmental involvement, planar motion, and range of motion (ROM). The third experiment used principal component scores obtained in Experiment 2 to describe changes in segmental foot and ankle motion during walking that resulted from surgical soft tissue balancing procedures for equinovarus. The relationship between segmental foot and ankle kinematics and walking velocity was also evaluated. The results demonstrated that surgical soft tissue balancing procedures result in more neutral hindfoot and forefoot gait kinematics. Individual cases of uncorrected deviations were attributed to two causes: (1) the specific segmental deformity was not identified pre-operatively, and therefore not surgically addressed, and (2) the deformity was so severe that a soft tissue balancing procedure could not correct it. Surgery did not have an effect on walking velocity, and correlation analysis demonstrated that increases in walking velocity were associated with increases in sagittal plane hindfoot range of motion

    A Long-term Follow-up of Young Adults With Idiopathic Clubfoot: Does Foot Morphology Relate to Pain?

    No full text
    Background: Individuals with clubfoot, treated in infancy with either the Ponseti method or comprehensive clubfoot release, often encounter pain as adults. Multiple studies have characterized residual deformity after Ponseti or surgical correction using physical exam, radiographs and pedobarography; however, the relationship between residual foot deformity and pain is not well defined. The purpose of the current study was 2-fold: (1) to evaluate the relationship between foot morphology and pain for young adults treated as infants for idiopathic clubfoot and (2) to describe and compare pedobarographic measures and outcome measures of pain and morphology among surgically treated, Ponseti treated, and typically developing feet. Methods: We performed a case-control study of individuals treated for clubfoot at 2 separate institutions with either the Ponseti method or comprehensive clubfoot release between 1983 and 1987. All subjects (24 treated with comprehensive clubfoot release, 18 with Ponseti method, and 48 controls) were evaluated using the International Clubfoot Study Group (ICFSG) morphology scoring, dynamic pedobarography, and foot function index surveys. During pedobarography, we collected the subarch angle and arch index as well as the center of pressure progression (COPP) on all subjects. Results: Foot morphology (ICFSG) scores were highly correlated with foot function index pain scores (r=0.43; P Conclusions: Measures of foot morphology were correlated with pain among all treated for clubfoot. Compared with Ponseti method, comprehensive surgical release lead to greater long-term foot deformity, flatter feet and greater hindfoot loading time. Level of Evidence: Level III—Therapeutic
    corecore