23 research outputs found

    A Simple Method for Analyzing Exome Sequencing Data Shows Distinct Levels of Nonsynonymous Variation for Human Immune and Nervous System Genes

    Get PDF
    To measure the strength of natural selection that acts upon single nucleotide variants (SNVs) in a set of human genes, we calculate the ratio between nonsynonymous SNVs (nsSNVs) per nonsynonymous site and synonymous SNVs (sSNVs) per synonymous site. We transform this ratio with a respective factor f that corrects for the bias of synonymous sites towards transitions in the genetic code and different mutation rates for transitions and transversions. This method approximates the relative density of nsSNVs (rdnsv) in comparison with the neutral expectation as inferred from the density of sSNVs. Using SNVs from a diploid genome and 200 exomes, we apply our method to immune system genes (ISGs), nervous system genes (NSGs), randomly sampled genes (RSGs), and gene ontology annotated genes. The estimate of rdnsv in an individual exome is around 20% for NSGs and 30–40% for ISGs and RSGs. This smaller rdnsv of NSGs indicates overall stronger purifying selection. To quantify the relative shift of nsSNVs towards rare variants, we next fit a linear regression model to the estimates of rdnsv over different SNV allele frequency bins. The obtained regression models show a negative slope for NSGs, ISGs and RSGs, supporting an influence of purifying selection on the frequency spectrum of segregating nsSNVs. The y-intercept of the model predicts rdnsv for an allele frequency close to 0. This parameter can be interpreted as the proportion of nonsynonymous sites where mutations are tolerated to segregate with an allele frequency notably greater than 0 in the population, given the performed normalization of the observed nsSNV to sSNV ratio. A smaller y-intercept is displayed by NSGs, indicating more nonsynonymous sites under strong negative selection. This predicts more monogenically inherited or de-novo mutation diseases that affect the nervous system

    A Novel Protein Kinase-Like Domain in a Selenoprotein, Widespread in the Tree of Life

    Get PDF
    Selenoproteins serve important functions in many organisms, usually providing essential oxidoreductase enzymatic activity, often for defense against toxic xenobiotic substances. Most eukaryotic genomes possess a small number of these proteins, usually not more than 20. Selenoproteins belong to various structural classes, often related to oxidoreductase function, yet a few of them are completely uncharacterised

    Can Insects Develop Resistance to Insect Pathogenic Fungi?

    Get PDF
    This paper presents new, important information on the microevolution of insect resistance to the insect pathogenic fungus Beauveria bassiana which will have far-reaching implications for the development of insect pathogenic fungi as biological control agents. We placed successive generations of a melanic population of the Greater wax moth, Galleria mellonella, under constant selective pressure from the insect pathogenic fungus, Beauveria bassiana. Enhanced fungal resistance was observed and larvae from the 25th generation were studied in detail to uncover mechanisms underpinning resistance, and the possible cost of those survival strategies. There are 3 novel, core findings from the study:1.Antifungal resistance in these insects is pathogen species-specific, and probably arises through trans-generational immune priming. The resistance was less obvious in earlier generations, suggesting subtle cumulative changes that are only fully apparent in the 25th generation. 2.The insect’s fecundity is already pushed close to minimum by its melanic phenotype. Therefore, the additional drain on resources required to boost antifungal defence still more, comes not from further compromising life history traits but via a re-allocation of the insect’s immune defences. Specifically during B. bassiana infection, systemic (fat body and hemocoel) responses, particularly the expression of antimicrobial peptides, are damped down in favour of a tailored repertoire of enhanced responses in the integument (cuticle and epidermis) – the foremost and most important barrier to natural fungal infection. 3.A previously-overlooked range of putative stress-management factors are activated during the specific response of selected insects to B. bassiana. This too occurs primarily in the integument, and contributes to antifungal defense and/or helps ameliorate the damage inflicted by the fungus or the host’s own immune responses during the battle between host and pathogen.No other study to date has examined so many genes in this context. Indeed, we show that the epidermis has a great capacity to express defense and stress-management genes as well as the fat body (which is the main tissue producing antimicrobial peptides and has been the traditional focus of attention). We therefore propose a “be specific / fight locally / de-stress” model to explain resource allocation and defence priorities for insects selected for superior resistance to insect-pathogenic fungi. However, we also show that these insects are less fecund and probably at no evolutionary advantage in the wild, implying that the risk is small of biological control agents failing in the field
    corecore