14 research outputs found

    Drosophila CPEB Orb2A Mediates Memory Independent of Its RNA-Binding Domain

    Get PDF
    SummaryLong-term memory and synaptic plasticity are thought to require the synthesis of new proteins at activated synapses. The CPEB family of RNA binding proteins, including Drosophila Orb2, has been implicated in this process. The precise mechanism by which these molecules regulate memory formation is however poorly understood. We used gene targeting and site-specific transgenesis to specifically modify the endogenous orb2 gene in order to investigate its role in long-term memory formation. We show that the Orb2A and Orb2B isoforms, while both essential, have distinct functions in memory formation. These two isoforms have common glutamine-rich and RNA-binding domains, yet Orb2A uniquely requires the former and Orb2B the latter. We further show that Orb2A induces Orb2 complexes in a manner dependent upon both its glutamine-rich region and neuronal activity. We propose that Orb2B acts as a conventional CPEB to regulate transport and/or translation of specific mRNAs, whereas Orb2A acts in an unconventional manner to form stable Orb2 complexes that are essential for memory to persist

    Comm function in commissural axon guidance: cell-autonomous sorting of Robo in vivo

    No full text
    Commissureless (Comm) controls axon guidance across the Drosophila melanogaster midline by regulating surface levels of Robo, the receptor for the midline repellent Slit. Two different models have been proposed for how Comm regulates Robo: a 'sorting' model and a 'clearance' model, both based on studies using heterologous cells in vitro. Here, we test these two models in vivo. We establish a genetic rescue assay for Comm, and use this assay to show that midline crossing does not require the presence of Comm in midline cells, as proposed by the clearance model. Moreover, by monitoring the trafficking of a Robo-green fluorescent protein (GFP) fusion in living embryos, we demonstrate that Comm prevents the delivery of Robo-GFP to the growth cone, as predicted by the sorting model. It has also been suggested that Comm must be ubiquitinated by the Nedd4 ubiquitin ligase. We show here, however, that ubiquitination of Comm is not required for its function in vitro or in vivo, and that Nedd4 is unlikely to function in axon guidance at the midline

    Persistent activity in a recurrent circuit underlies courtship memory in Drosophila

    No full text
    Recurrent connections are thought to be a common feature of the neural circuits that encode memories, but how memories are laid down in such circuits is not fully understood. Here we present evidence that courtship memory in Drosophila relies on the recurrent circuit between mushroom body gamma (MBγ), M6 output, and aSP13 dopaminergic neurons. We demonstrate persistent neuronal activity of aSP13 neurons and show that it transiently potentiates synaptic transmission from MBγ>M6 neurons. M6 neurons in turn provide input to aSP13 neurons, prolonging potentiation of MBγ>M6 synapses over time periods that match short-term memory. These data support a model in which persistent aSP13 activity within a recurrent circuit lays the foundation for a short-term memory

    Netrins

    No full text

    At

    No full text
    growth cones as they cross the midline. But how doe

    Vilse, a conserved Rac/Cdc42 GAP mediating Robo repulsion in tracheal cells and axons

    No full text
    Slit proteins steer the migration of many cell types through their binding to Robo receptors, but how Robo controls cell motility is not clear. We describe the functional analysis of vilse, a Drosophila gene required for Robo repulsion in epithelial cells and axons. Vilse defines a conserved family of RhoGAPs (Rho GTPase-activating proteins), with representatives in flies and vertebrates. The phenotypes of vilse mutants resemble the tracheal and axonal phenotypes of Slit and Robo mutants at the CNS midline. Dosage-sensitive genetic interactions between vilse, slit, and robo mutants suggest that vilse is a component of robo signaling. Moreover, overexpression of Vilse in the trachea of robo mutants ameliorates the phenotypes of robo, indicating that Vilse acts downstream of Robo to mediate midline repulsion. Vilse and its human homolog bind directly to the intracellular domains of the corresponding Robo receptors and promote the hydrolysis of RacGTP and, less efficiently, of Cdc42GTP. These results together with genetic interaction experiments with robo, vilse, and rac mutants suggest a mechanism whereby Robo repulsion is mediated by the localized inactivation of Rac through Vilse
    corecore