10 research outputs found

    New perspectives for undoped CaF2 scintillator as a threshold activation neutron detector

    Get PDF
    In this paper we present the prompt photofission neutron detection performance of undoped CaF2 scintillator using Threshold Activation Detection (TAD). The study is carried out in the frame of C-BORD Horizon 2020 project, during which an efficient toolbox for high volume freight non-intrusive inspection (NII) is under development. Technologies for radiation monitoring are the part of the project. Particularly, detection of various radiological threats on country borders plays an important significant role in Homeland Security applications. Detection of illegal transfer of Special Nuclear Material (SNM) - 235U, 233U and 239Pu - is particular due to the potential use for production of nuclear weapon as well as radiological dispersal device (RDD) V known also as a "dirty bomb". This technique relies on activation of 19F nuclei in the scintillator medium by fast neutrons and registration of high-energy β particles and γ-rays from the decay of reaction products. The radiation from SNM is detected after irradiation in order to avoid detector blinding. Despite the low 19F(n,α)16N or 19F(n,p)19O reaction cross-section, the method could be a good solution for detection of shielded nuclear material. Results obtained with the CaF2 detector were compared with the previous study done for BaF2 and 3He detector. These experimental results were obtained using 252Cf source and 9 MeV Varian Linatron M9 linear accelerator (LINAC). Finally, performance of the prompt neutron detection system based on CaF2 will be validated at Rotterdam Seaport during field trails in 2018

    Application of fluorine-based threshold activation detector for neutron flux calculation from D-T neutron generator

    Get PDF
    In this paper we propose a method of fast neutron flux estimation from a pulsed D-T neutron generator with application of single CaF2 scintillation crystal. The analysis method relies on 19F(n, α)16N threshold activation reaction having neutron energy threshold at 1.6 MeV. As a result, the 16N undergo β− decay with half-life of 7.1 s, emitting β particles with endpoint up to 10.4 MeV in the scintillator medium. Integration of the β distribution curve, preceded by calculation of (n, α) rate on F with Monte Carlo N-Particle Transport Code v6 (MCNP6) for fixed geometry, allows to estimate the neutron flux in 4π per second within few minutes

    Application of fluorine-based threshold activation detector for neutron flux calculation from D-T neutron generator

    No full text
    In this paper we propose a method of fast neutron flux estimation from a pulsed D-T neutron generator with application of single CaF2 scintillation crystal. The analysis method relies on 19F(n, α)16N threshold activation reaction having neutron energy threshold at 1.6 MeV. As a result, the 16N undergo β− decay with half-life of 7.1 s, emitting β particles with endpoint up to 10.4 MeV in the scintillator medium. Integration of the β distribution curve, preceded by calculation of (n, α) rate on F with Monte Carlo N-Particle Transport Code v6 (MCNP6) for fixed geometry, allows to estimate the neutron flux in 4π per second within few minutes

    Design of the rapidly relocatable tagged neutron inspection system of the C-BORD project

    No full text
    International audienceWithin the framework of the European H2020 C-BORD project, aiming at improving container inspection technologies, a compact and "Rapidly Relocatable Tagged Neutron Inspection System", called RRTNIS, is being developed taking into account past EURITRACK experience with a portal TNIS, and the latest technologies in terms of associated particle neutron generator and data acquisition electronics. A dedicated shield surrounding the neutron generator has been designed with MCNP6 to limit the size of the restricted area and the count rate on gamma detectors, which are located very close to the generator. This new design with "reflection" detectors only, i.e. in backscattering position, is indeed more efficient to detect suspect items, like explosives or illicit drugs, in bottom regions of the container, compared to EURITRACK detectors which were mainly located above the container. It also allows designing a relocatable system for different inspection sites like seaports, borders, or other checkpoints. Dose and count rate calculations are presented to determine the restricted area and facilitate the design of the data acquisition electronics, respectively

    New perspectives for undoped CaF2 scintillator as a threshold activation neutron detector

    No full text
    In this paper we present the prompt photofission neutron detection performance of undoped CaF2 scintillator using Threshold Activation Detection (TAD). The study is carried out in the frame of C-BORD Horizon 2020 project, during which an efficient toolbox for high volume freight non-intrusive inspection (NII) is under development. Technologies for radiation monitoring are the part of the project. Particularly, detection of various radiological threats on country borders plays an important significant role in Homeland Security applications. Detection of illegal transfer of Special Nuclear Material (SNM) - 235U, 233U and 239Pu - is particular due to the potential use for production of nuclear weapon as well as radiological dispersal device (RDD) V known also as a “dirty bomb”. This technique relies on activation of 19F nuclei in the scintillator medium by fast neutrons and registration of high-energy β particles and γ-rays from the decay of reaction products. The radiation from SNM is detected after irradiation in order to avoid detector blinding. Despite the low 19F(n,α)16N or 19F(n,p)19O reaction cross-section, the method could be a good solution for detection of shielded nuclear material. Results obtained with the CaF2 detector were compared with the previous study done for BaF2 and 3He detector. These experimental results were obtained using 252Cf source and 9 MeV Varian Linatron M9 linear accelerator (LINAC). Finally, performance of the prompt neutron detection system based on CaF2 will be validated at Rotterdam Seaport during field trails in 2018

    Detection System of the First Rapidly Relocatable Tagged Neutron Inspection System (RRTNIS), Developed in the Framework of the European H2020 C-BORD Project

    No full text
    none19sinoneFontana, Cristiano Lino; Carnera, Alberto; Lunardon, Marcello; Felix, Pino; Sada, Cinzia; Soramel, Francesca; Stevanato, Luca; Nebbia, Giancarlo; Carasco, Cédric; Perot, Bertrand; Sardet, Alix; Sannie, Guillaume; Iovene, Alessandro; Tintori, Carlo; Grodzicki, Krystian; Moszyński, Marek; Sibczyński, Paweł; Swiderski, Lukasz; Moretto, SandraFontana, Cristiano Lino; Carnera, Alberto; Lunardon, Marcello; Pino, Felix; Sada, Cinzia; Soramel, Francesca; Stevanato, Luca; Nebbia, Giancarlo; Carasco, Cédric; Perot, Bertrand; Sardet, Alix; Sannie, Guillaume; Iovene, Alessandro; Tintori, Carlo; Grodzicki, Krystian; Moszyński, Marek; Sibczyński, Paweł; Swiderski, Lukasz; Moretto, Sandr

    Advances on the development of the detection system of C-BORD’s rapidly relocatable tagged neutron inspection

    Get PDF
    none19nonePino, Felix; Fontana, Cristiano Lino; Lunardon, Marcello; Stevanato, Luca; Sada, Cinzia; Carnera, Alberto; Soramel, Francesca; Moretto, Sandra; Nebbia, Giancarlo; Sardet, Alix; Carasco, Cedric; Perot, Bertrand; Sannie, Guillaume; Iovene, Alessandro; Tintori, Carlo; Sibczynski, Pawel; Swiderski, Lukasz; Grodzicki, Krystian; Moszynski, MarekPino, Felix; Fontana, Cristiano Lino; Lunardon, Marcello; Stevanato, Luca; Sada, Cinzia; Carnera, Alberto; Soramel, Francesca; Moretto, Sandra; Nebbia, Giancarlo; Sardet, Alix; Carasco, Cedric; Perot, Bertrand; Sannie, Guillaume; Iovene, Alessandro; Tintori, Carlo; Sibczynski, Pawel; Swiderski, Lukasz; Grodzicki, Krystian; Moszynski, Mare

    The cosmic ray detector for the NICA collider

    No full text
    Multi-Purpose Detector (MPD) is a main part of a new Ion Collider fAcility (NICA) located in Dubna, Russia. To increase MPD functionality, it was proposed to add an additional muon trigger system for off-beam calibration of the MPD sub-detectors and for rejection of cosmic ray background during experiments. The system could also be very useful for astrophysical observations of cosmic showers initiated by high energy primary particles. This article describes the main goals of MCORD detector and the early stage of MCORD design, based on plastic scintillators with silicon photomultiplier photodetectors (SiPM) for scintillation readout and electronic system based on MicroTCA standard

    The cosmic ray detector for the NICA collider

    Get PDF
    Multi-Purpose Detector (MPD) is a main part of a new Ion Collider fAcility (NICA) located in Dubna, Russia. To increase MPD functionality, it was proposed to add an additional muon trigger system for off-beam calibration of the MPD sub-detectors and for rejection of cosmic ray background during experiments. The system could also be very useful for astrophysical observations of cosmic showers initiated by high energy primary particles. This article describes the main goals of MCORD detector and the early stage of MCORD design, based on plastic scintillators with silicon photomultiplier photodetectors (SiPM) for scintillation readout and electronic system based on MicroTCA standard

    C-BORD - An overview of efficient toolbox for high-volume freight inspection

    No full text
    International audienceIn the frame of the C-BORD project, five innovate technology pillars for Non-Intrusive Inspection (NII) are under development. Freight containers are potential means for smuggling, drug trafficking and transport of dangerous or illicit substances. The goal of the C-BORD project is to increase interdiction of illicit or dangerous materials in containerized freight and deliver new capabilities against critical operational requirements and constrains. Particularly, the aim of the project is to increase throughput of the container per time unit, reduce cost and time of cargo inspection and minimize the false negative and false positive alarm ratios. Finally, thanks to field trials organized during the project, capability of these systems will be proven and the C-BORD Toolbox usefulness will be validated by end users under real conditions at sea and border crosses
    corecore