8 research outputs found

    Towards better understanding of C60 organosols

    Get PDF
    It is of common knowledge that fullerenes form colloids in polar solvents. However, the coagulation via electrolytes and the origin of the negative charge of species are still unexplored. Using a ‘radical scavenger’ and electrospray ionization spectroscopy (ESI), we proved the formation of ion-radical C60˙− and its (probable) transformation into C602− or (C60)22−. The coagulation of C60 organosols by NaClO4 and other perchlorates and nitrates in acetonitrile and its mixture with benzene obeys the Schulze–Hardy rule. At higher Ca(ClO4)2 and La(ClO4)3 concentrations, instead of coagulation, stable re-charged colloidal particles appeared, up to a zeta-potential of +(20–42) mV, as compared with −(33–35) mV of the initial organosols. The influence of both HClO4 and CF3SO3H was similar. This phenomenon is attributed to poor solvation of inorganic cations in cationo- and protophobic acetonitrile, which was proven using [2.2.2] cryptand. Further increasing the concentration of Ca(ClO4)2 led again to coagulation, thus demonstrating a novel type of ‘coagulation zones’

    Fluorescence Probing of Thiol-Functionalized Gold Nanoparticles: Is Alkylthiol Coating of a Nanoparticle as Hydrophobic as Expected?

    No full text
    Understanding the interaction of fluorescent dyes with monolayer-protected gold nanoparticles (AuNPs) is of fundamental importance in designing new fluorescent nanomaterials. Among a variety of molecular sensors and reporters, fluorescent probes based on a 3-hydroxychromone (3HC) skeleton appear to be very promising. They exhibit the phenomenon of dual band emission, resulting from excited-state intramolecular proton transfer (ESIPT), known to be highly sensitive to a nature of microenvironment surrounding a fluorophore. In this study, dodecanethiol-protected gold nanoparticles were synthesized, and, owing to the transmission electron micrograph imaging, their average diameter was found to be ∌1.4 nm. Fluorescence titrations of the 3HC ESIPT probes with AuNPs in toluene solutions demonstrate significant changes in the intensity ratio of their normal and tautomeric emission bands, suggesting that the probe molecules become noncovalently bound to a dodecanethiol layer of AuNPs. Despite expected fluorescence quenching induced by close proximity to the metal surface, no fluorescence lifetime decrease was observed, indicating that a bound-fluorophore is shielded from a nanoparticle core. Further spectral analysis revealed that the ratiometric fluorescence changes could be interpreted as a consequence of intermolecular hydrogen bonding between a probe and residual ethanol molecules, trapped into the dodecanethiol shell of AuNPs during the synthesis. Evidences for residual traces of ethanol in the ligand shell of the nanoparticles were also observed in NMR spectra, suggesting that alkylthiol-coated gold nanoparticles may not be as hydrophobic as one could expect. To elucidate structural features of dodecanethiol-stabilized gold nanoparticles at the supramolecular level, a molecular dynamics (MD) model of AuNP was developed. The model was based on the all-atom CHARMM27 force field parameters and parametrized according to available experimental data of the synthesized AuNPs. Our MD simulations show that in bulk toluene the 3HC probe molecule becomes weakly bound to a dodecanethiol monolayer, so that a fluorophore favors residence in an outer shell of AuNP. In addition, MD simulations of transfer of AuNP from bulk ethanol to toluene demonstrate that a small population of ethanol molecules are able to penetrate deeply into the dodecanethiol layer and may indeed be trapped into the ligand shell of alkylthiol-functionalized gold nanoparticles. The results of our fluorescence experiments and molecular dynamics simulation suggest that 3-hydroxychromones can be used as a noncovalent fluorescent labeling agent for alkylthiol-stabilized noble metal nanoparticles

    Fluorescence Probing of Thiol-Functionalized Gold Nanoparticles: Is Alkylthiol Coating of a Nanoparticle as Hydrophobic as Expected?

    No full text
    Understanding the interaction of fluorescent dyes with monolayer-protected gold nanoparticles (AuNPs) is of fundamental importance in designing new fluorescent nanomaterials. Among a variety of molecular sensors and reporters, fluorescent probes based on a 3-hydroxychromone (3HC) skeleton appear to be very promising. They exhibit the phenomenon of dual band emission, resulting from excited-state intramolecular proton transfer (ESIPT), known to be highly sensitive to a nature of microenvironment surrounding a fluorophore. In this study, dodecanethiol-protected gold nanoparticles were synthesized, and, owing to the transmission electron micrograph imaging, their average diameter was found to be ∌1.4 nm. Fluorescence titrations of the 3HC ESIPT probes with AuNPs in toluene solutions demonstrate significant changes in the intensity ratio of their normal and tautomeric emission bands, suggesting that the probe molecules become noncovalently bound to a dodecanethiol layer of AuNPs. Despite expected fluorescence quenching induced by close proximity to the metal surface, no fluorescence lifetime decrease was observed, indicating that a bound-fluorophore is shielded from a nanoparticle core. Further spectral analysis revealed that the ratiometric fluorescence changes could be interpreted as a consequence of intermolecular hydrogen bonding between a probe and residual ethanol molecules, trapped into the dodecanethiol shell of AuNPs during the synthesis. Evidences for residual traces of ethanol in the ligand shell of the nanoparticles were also observed in NMR spectra, suggesting that alkylthiol-coated gold nanoparticles may not be as hydrophobic as one could expect. To elucidate structural features of dodecanethiol-stabilized gold nanoparticles at the supramolecular level, a molecular dynamics (MD) model of AuNP was developed. The model was based on the all-atom CHARMM27 force field parameters and parametrized according to available experimental data of the synthesized AuNPs. Our MD simulations show that in bulk toluene the 3HC probe molecule becomes weakly bound to a dodecanethiol monolayer, so that a fluorophore favors residence in an outer shell of AuNP. In addition, MD simulations of transfer of AuNP from bulk ethanol to toluene demonstrate that a small population of ethanol molecules are able to penetrate deeply into the dodecanethiol layer and may indeed be trapped into the ligand shell of alkylthiol-functionalized gold nanoparticles. The results of our fluorescence experiments and molecular dynamics simulation suggest that 3-hydroxychromones can be used as a noncovalent fluorescent labeling agent for alkylthiol-stabilized noble metal nanoparticles

    Towards better understanding of C60 organosols

    No full text
    It is of common knowledge that fullerenes form colloids in polar solvents. However, the coagulation via electrolytes and the origin of the negative charge of species are still unexplored. Using a ‘radical scavenger’ and electrospray ionization spectroscopy (ESI), we proved the formation of ion-radical C60˙− and its (probable) transformation into C602− or (C60)22−. The coagulation of C60 organosols by NaClO4 and other perchlorates and nitrates in acetonitrile and its mixture with benzene obeys the Schulze–Hardy rule. At higher Ca(ClO4)2 and La(ClO4)3 concentrations, instead of coagulation, stable re-charged colloidal particles appeared, up to a zeta-potential of +(20–42) mV, as compared with −(33–35) mV of the initial organosols. The influence of both HClO4 and CF3SO3H was similar. This phenomenon is attributed to poor solvation of inorganic cations in cationo- and protophobic acetonitrile, which was proven using [2.2.2] cryptand. Further increasing the concentration of Ca(ClO4)2 led again to coagulation, thus demonstrating a novel type of ‘coagulation zones’

    Thermodynamically Stable Dispersions of Quantum Dots in a Nematic Liquid Crystal

    No full text
    Using transmittance electron microscopy, fluorescence and polarizing optical microscopy, optical spectroscopy, and fluorescent correlation spectroscopy, it was shown that CdSe/ZnS quantum dots coated with a specifically designed surfactant were readily dispersed in nematic liquid crystal (LC) to form stable colloids. The mixture of an alkyl phosphonate and a dendritic surfactant, where the constituent molecules contain promesogenic units, enabled the formation of thermodynamically stable colloids that were stable for at least 1 year. Stable colloids are formed due to minimization of the distortion of the LC ordering around the quantum dots

    Diluted and concentrated organosols of fullerene C 60 in the toluene–acetonitrile solvent system as studied by diverse experimental methods

    No full text
    In this article, we examined the state of fullerene C60_{60} in toluene and its mixtures with acetonitrile in both diluted, (4.0 to 6.3)×10−6^{−6} M, and concentrated, (0.23 to 1.9)×10−3^{−3} М solutions, prepared by either equilibrium or non-equilibrium procedures. Typically, the working solutions were prepared by diluting stock solutions of fullerene in toluene. Some specific features of solid fullerene interaction with atmospheric oxygen were revealed using the LDI mass-spectrometry. A combination of electron absorption spectra of the fullerene in C6_6H5_5CH3_3–CH3_3CN mixtures with the analysis of the particle size distribution using the DLS method demonstrated that even in acetonitrile-rich media, where diluted C60_{60} exists in colloidal state, some features of the molecular absorption spectra are still present. Such effect is in line with the formation of the large solvation shells of an aromatic solvent around fullerenes. The TEM images of the dried colloidal solutions demonstrate a loose floc configuration of the aggregates, contrary to the crystal structure of the species in a toluene-free C60_{60} dispersion obtained by hand-grinding. In solution, the spectrum of the last-named is a monotonous curve increasing toward ultraviolet. The LDI measurements proved the tendency of C60_{60} toward forming negative species under contact with acetonitrile. Electrophoretic studies state that a universal property of the negatively charged colloidal species is their expressed ability to overcharging in the presence of inorganic cations, which are poorly solvated by acetonitrile. In concentrated (oversaturated) fullerene solutions, where the SAXS and SANS methods are applicable, fractal-type aggregates of fullerenes were revealed in solutions. The analysis of aggregates structure indicates that their packing density is increased with growth of fullerene concentration and/or amount of acetonitrile in the mixture. Thus, branched aggregates were observed in toluene solution, while fullerenes form dense clusters with diffusive surface in mixtures with acetonitrile
    corecore