320 research outputs found

    First order Fermi acceleration driven by magnetic reconnection

    Full text link
    A box model is used to study first order Fermi acceleration driven by magnetic reconnection. It is shown, at least in this simple model, that the spectral index of the accelerated particles is related to the total compression in the same way as in diffusive shock acceleration and is not, as has been suggested, a universal E−5/2E^{-5/2} spectrum. The acceleration time-scale is estimated and some comments made about the applicability of the process.Comment: Accepted for MNRA

    Analytical Study of Diffusive Relativistic Shock Acceleration

    Full text link
    Particle acceleration in relativistic shocks is studied analytically in the test-particle, small-angle scattering limit, for an arbitrary velocity-angle diffusion function D. Accurate analytic expressions for the spectral index s are derived using few (2-6) low-order moments of the shock-frame angular distribution. For isotropic diffusion, previous results are reproduced and justified. For anisotropic diffusion, s is shown to be sensitive to D, particularly downstream and at certain angles, and a wide range of s values is attainable. The analysis, confirmed numerically, can be used to test collisionless shock models and to observationally constrain D. For example, strongly forward- or backward-enhanced diffusion downstream is ruled out by GRB afterglow observations.Comment: 4 pages, 2 figures, PRL accepted, minor change

    Escaping the accelerator; how, when and in what numbers do cosmic rays get out of supernova remnants?

    Full text link
    The escape of charged particles accelerated by diffusive shock acceleration from supernova remnants is shown to be a more complex process than normally appreciated. Using a box model it is shown that the high-energy end of the spectrum can exhibit spectral breaks even with no formal escape as a result of geometrical dilution and changing time-scales. It is pointed out that the bulk of the cosmic ray particles at lower energies must be produced and released in the late stages of the remnant's evolution whereas the high energy particles are produced early on; this may explain recent observations of slight compositional variations with energy. Escape resulting from ion-neutral friction in dense and partially ionized media is discussed briefly and some comments made on the use of so-called "free escape boundary conditions". Finally estimates are made of the total production spectrum integrated over the life of the remnant.Comment: To appear in MNRA

    Self-Similar Collisionless Shocks

    Full text link
    Observations of gamma-ray burst afterglows suggest that the correlation length of magnetic field fluctuations downstream of relativistic non-magnetized collisionless shocks grows with distance from the shock to scales much larger than the plasma skin depth. We argue that this indicates that the plasma properties are described by a self-similar solution, and derive constraints on the scaling properties of the solution. For example, we find that the scaling of the characteristic magnetic field amplitude with distance from the shock is B \propto D^{s_B} with -1<s_B<=0, that the spectrum of accelerated particles is dn/dE \propto E^{-2/(s_B+1)}, and that the scaling of the magnetic correlation function is \propto x^{2s_B} (for x>>D). We show that the plasma may be approximated as a combination of two self-similar components: a kinetic component of energetic particles and an MHD-like component representing "thermal" particles. We argue that the latter may be considered as infinitely conducting, in which case s_B=0 and the scalings are completely determined (e.g. dn/dE \propto E^{-2} and B \propto D^0). Similar claims apply to non- relativistic shocks such as in supernova remnants, if the upstream magnetic field can be neglected. Self-similarity has important implications for any model of particle acceleration and/or field generation. For example, we show that the diffusion function in the angle \mu of momentum p in diffusive shock acceleration models must satisfy D_{\mu\mu}(p,D) = D^{-1}D'_{\mu\mu}(p/D), and that a previously suggested model for the generation of large scale magnetic fields through a hierarchical merger of current-filaments should be generalized. A numerical experiment testing our analysis is outlined (Abridged).Comment: 16 pages, 1 figure, accepted for publication in Ap

    Pair Creation at Shocks: Application to the High Energy Emission of Compact objects

    Get PDF
    We investigate the effect of pair creation on a shock structure. Actually, particles accelerated by a shock can be sufficiently energetic to boost, via Inverse Compton (IC) process for example, surrounding soft photons above the rest mass electron energy and thus to trigger the pair creation process. The increase of the associated pair pressure is thus able to disrupt the plasma flow and possibly, for too high pressure, to smooth it completely. Reversely, significant changes of the flow velocity profile may modify the distribution function of the accelerated particles, modifying consequently the pair creation rate. Stationary states are then obtained by solving self-consistently for the particle distribution function and the flow velocity profile. We discuss our results and the application of these processes to the high energy emission and variability of compact objects.Comment: 14 pages, 7 figures (uses newpasp.sty included). To appear in Proc. of "X-ray astronomy 2000",(Palermo Sep. 2000), Eds. R. Giacconi, L. Stella, S. Serio, ASP Conf. Series, in pres

    A two-zone model for the emission from RX J1713.7-3946

    Full text link
    We study the acceleration and radiation of charged particles in the shock waves of supernova remnants using a recent version of the "box model". According to this, particles are accelerated in an energy-dependent region around the shock by the first order Fermi mechanism and lose energy through radiation. The particle distribution function is obtained from a spatially averaged kinetic equation that treats the energy losses self-consistently. There exists also a second population that consists of those particles that escape behind the shock where they also radiate. The energy distribution of this population is calculated in a similar manner. The application of the model to the supernova remnant RX J1713.7-3946, which was recently confirmed as a TeV source by H.E.S.S., shows that the X-ray emission can be attributed to electron synchrotron radiation while in gamma-rays there are contributions from both electrons and protons, with protons playing the dominant role. Additionally, there are strong indications that particles diffuse in turbulence that has a Kolmogorov spectrum.Comment: 6 pages, 2 figures, accepted by Astronomy and Astrophysic

    Diffuse Galactic Gamma Rays from Shock-Accelerated Cosmic Rays

    Full text link
    A shock-accelerated particle flux \propto p^-s, where p is the particle momentum, follows from simple theoretical considerations of cosmic-ray acceleration at nonrelativistic shocks followed by rigidity-dependent escape into the Galactic halo. A flux of shock-accelerated cosmic-ray protons with s ~ 2.8 provides an adequate fit to the Fermi-LAT gamma-ray emission spectra of high-latitude and molecular cloud gas when uncertainties in nuclear production models are considered. A break in the spectrum of cosmic-ray protons claimed by Neronov, Semikoz, & Taylor (PRL, 108, 051105, 2012) when fitting the gamma-ray spectra of high-latitude molecular clouds is a consequence of using a cosmic-ray proton flux described by a power law in kinetic energy.Comment: Version to correspond to published letter in PRL; corrected Fig.

    The contribution of supernova remnants to the galactic cosmic ray spectrum

    Full text link
    The supernova paradigm for the origin of galactic cosmic rays has been deeply affected by the development of the non-linear theory of particle acceleration at shock waves. Here we discuss the implications of applying such theory to the calculation of the spectrum of cosmic rays at Earth as accelerated in supernova remnants and propagating in the Galaxy. The spectrum is calculated taking into account the dynamical reaction of the accelerated particles on the shock, the generation of magnetic turbulence which enhances the scattering near the shock, and the dynamical reaction of the amplified field on the plasma. Most important, the spectrum of cosmic rays at Earth is calculated taking into account the flux of particles escaping from upstream during the Sedov-Taylor phase and the adiabatically decompressed particles confined in the expanding shell and escaping at later times. We show how the spectrum obtained in this way is well described by a power law in momentum with spectral index close to -4, despite the concave shape of the instantaneous spectra of accelerated particles. On the other hand we also show how the shape of the spectrum is sensible to details of the acceleration process and environment which are and will probably remain very poorly known.Comment: 19 pages, 8 figures, published version (references updated

    Non linear particle acceleration at non-relativistic shock waves in the presence of self-generated turbulence

    Get PDF
    Particle acceleration at astrophysical shocks may be very efficient if magnetic scattering is self-generated by the same particles. This nonlinear process adds to the nonlinear modification of the shock due to the dynamical reaction of the accelerated particles on the shock. Building on a previous general solution of the problem of particle acceleration with arbitrary diffusion coefficients (Amato & Blasi, 2005), we present here the first semi-analytical calculation of particle acceleration with both effects taken into account at the same time: charged particles are accelerated in the background of Alfven waves that they generate due to the streaming instability, and modify the dynamics of the plasma in the shock vicinity.Comment: submitted to MNRA

    The effect of the hot oxygen corona on the interaction of the solar wind with Venus

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95142/1/grl3589.pd
    • …
    corecore