66 research outputs found
Assessment of shoulder position variation and its impact on IMRT and VMAT doses for head and neck cancer
<p>Abstract</p> <p>Background</p> <p>For radiotherapy of the head and neck, 5-point mask immobilization is used to stabilize the shoulders. Still, the daily position of the shoulders during treatment may be different from the position in the treatment plan despite correct isocenter setup. The purpose of this study was to determine the interfractional displacement of the shoulders relative to isocenter over the course of treatment and the associated dosimetric effect of this displacement.</p> <p>Methods</p> <p>The extent of shoulder displacements relative to isocenter was assessed for 10 patients in 5-point thermoplastic masks using image registration and daily CT-on-rails scans. Dosimetric effects on IMRT and VMAT plans were evaluated in Pinnacle based on simulation CTs modified to represent shoulder shifts between 3 and 15 mm in the superior-inferior, anterior-posterior, and right-left directions. The impact of clinically observed shoulder shifts on the low-neck dose distributions was examined.</p> <p>Results</p> <p>Shoulder motion was 2-5 mm in each direction on average but reached 20 mm. Superior shifts resulted in coverage loss, whereas inferior shifts increased the dose to the brachial plexus. These findings were generally consistent for both IMRT and VMAT plans. Over a course of observed shifts, the dose to 99% of the CTV decreased by up to 101 cGy, and the brachial plexus dose increased by up to 72 cGy.</p> <p>Conclusions</p> <p>he position of the shoulder affects target coverage and critical structure dose, and may therefore be a concern during the setup of head and neck patients, particularly those with low neck primary disease.</p
Development and implementation of an anthropomorphic pediatric spine phantom for the assessment of craniospinal irradiation procedures in proton therapy
Purpose: To design an anthropomorphic pediatric spine phantom for use in the evaluation of proton therapy facilities for clinical trial participation by the Imaging and Radiation Oncology Core (IROC) Houston QA Center (formerly RPC).Methods: This phantom was designed to perform an end-to-end audit of the proton spine treatment process, including simulation, dose calculation by the treatment planning system (TPS), and proton treatment delivery. The design incorporated materials simulating the thoracic spinal column of a pediatric patient, along with two thermoluminescent dosimeter (TLD)-100 capsules and radiochromic film embedded in the phantom for dose evaluation. Fourteen potential materials were tested to determine relative proton stopping power (RSP) and Hounsfield unit (HU) values. Each material was CT scanned at 120 kVp, and the RSP was obtained from depth ionization scans using the Zebra multi-layer ion chamber (MLIC) at two energies: 160 MeV and 250 MeV. To determine tissue equivalency, the measured RSP for each material was compared to the RSP calculated by the Eclipse TPS for a given HU.Results: The materials selected as bone, tissue, and cartilage substitutes were Techron HPV Bearing Grade (Boedeker Plastics, Inc.), solid water, and blue water, respectively. The RSP values did not differ by more than 1.8% between the two energies. The measured RSP for each selected material agreed with the RSP calculated by the Eclipse TPS within 1.2%.Conclusion: An anthropomorphic pediatric proton spine phantom was designed to evaluate proton therapy delivery. The inclusion of multiple tissue substitutes increases heterogeneity and the level of difficulty for institutions to successfully treat the phantom. The following attributes will be evaluated: absolute dose agreement, distal range, field width, junction match and right/left dose profile alignment. The phantom will be tested at several institutions using a 5% dose agreement criterion, and a 5%/3mm gamma analysis criterion for the film planes.--------------------------------------Cite this article as: Lewis DJ, Summers PA, Followill DS, Sahoo N, Mahajan A, Stingo FC, Kry SF. Development and implementation of an anthropomorphic pediatric spine phantom for the assessment of craniospinal irradiation procedures in proton therapy. Int J Cancer Ther Oncol 2014; 2(2):020227. DOI: 10.14319/ijcto.0202.2
Evaluation of three commercial metal artifact reduction methods for CT simulations in radiation therapy
Purpose: To evaluate the success of three commercial metal artifact reduction methods (MAR) in the context of radiation therapy treatment planning.Methods: Three MAR strategies were evaluated: Philips O-MAR, monochromatic imaging using Gemstone Spectral Imaging (GSI) dual energy CT, and monochromatic imaging with metal artifact reduction software (GSI-MARs). The Gammex RMI 467 tissue characterization phantom with several metal rods and two anthropomorphic phantoms (pelvic phantom with hip prosthesis and head phantom with dental fillings), were scanned with and without metals (baseline). Each MAR method was evaluated based on CT number accuracy, metal size accuracy, and reduction in the severity of streak artifacts. CT number difference maps between the baseline and metal scan images were calculated, and the severity of streak artifacts was quantified using the percentage of pixels with > 40 HU error (“bad pixels”).Results: Philips O-MAR generally reduced HU errors in the RMI phantom. However, increased errors and induced artifacts were observed for lung materials. GSI monochromatic 70keV images generally showed similar HU errors as conventional 120kVp imaging, while 140keV images reduced HU errors. All the imaging techniques represented the diameter of a stainless steel rod to within ±1.6mm (2 pixels). For the hip prosthesis, O-MAR reduced the average % bad pixels from 47% to 32%. For GSI 140keV imaging, the % bad pixels was reduced from 37% to 29% compared to 120kVp imaging, and GSI-MARs further reduced it to 12%. For the head phantom, none of the MAR methods was particularly successful.Conclusion: O-MAR resulted in consistent artifact reduction but exhibited induced artifacts for metals located near lung tissue. GSI imaging at 140keV gave consistent reduction in HU errors and severity of artifacts. GSI-MARs at 140keV was the most successful MAR method for the hip prosthesis but exhibited induced artifacts at the edges of metals in some cases.---------------------------------Cite this article as: Huang JY, Kerns JR, Nute JL, Liu X, Stingo FC, Followill DS, Mirkovic D, Howell RM, Kry SF. Evaluation of three commercial metal artifact reduction methods for CT simulations in radiation therapy. Int J Cancer Ther Oncol 2014; 2(2):020224. DOI: 10.14319/ijcto.0202.2
Intensity modulated radiotherapy (IMRT) in the treatment of children and Adolescents - a single institution's experience and a review of the literature
<p>Abstract</p> <p>Background</p> <p>While IMRT is widely used in treating complex oncological cases in adults, it is not commonly used in pediatric radiation oncology for a variety of reasons. This report evaluates our 9 year experience using stereotactic-guided, inverse planned intensity-modulated radiotherapy (IMRT) in children and adolescents in the context of the current literature.</p> <p>Methods</p> <p>Between 1999 and 2008 thirty-one children and adolescents with a mean age of 14.2 years (1.5 - 20.5) were treated with IMRT in our department. This heterogeneous group of patients consisted of 20 different tumor entities, with Ewing's sarcoma being the largest (5 patients), followed by juvenile nasopharyngeal fibroma, esthesioneuroblastoma and rhabdomyosarcoma (3 patients each). In addition a review of the available literature reporting on technology, quality, toxicity, outcome and concerns of IMRT was performed.</p> <p>Results</p> <p>With IMRT individualized dose distributions and excellent sparing of organs at risk were obtained in the most challenging cases. This was achieved at the cost of an increased volume of normal tissue receiving low radiation doses. Local control was achieved in 21 patients. 5 patients died due to progressive distant metastases. No severe acute or chronic toxicity was observed.</p> <p>Conclusion</p> <p>IMRT in the treatment of children and adolescents is feasible and was applied safely within the last 9 years at our institution. Several reports in literature show the excellent possibilities of IMRT in selective sparing of organs at risk and achieving local control. In selected cases the quality of IMRT plans increases the therapeutic ratio and outweighs the risk of potentially increased rates of secondary malignancies by the augmented low dose exposure.</p
Grasp Sensing for Human-Computer Interaction
The way we grasp an object depends on several factors, e.g. the intended goal or the hand's anatomy. Therefore, a grasp can convey meaningful information about its context. Inferring these factors from a grasp allows us to enhance interaction with grasp-sensitive objects. This paper highlights an grasp as an important source of meaningful context for human-computer interaction and gives an overview of prior work from other disciplines. This paper offers a basis and framework for further research and discussion by proposing a descriptive model of meaning in grasps. The GRASP model combines five factors that determine how an object is grasped: goal, relationship between user and object, anatomy, setting, and properties of the object. The model is validated both from an epistemological perspective and by applying it to scenarios from related work
- …