110 research outputs found

    Screening of retroviral cDNA libraries for factors involved in protein phosphorylation in signaling cascades

    Get PDF
    We report a novel approach that allows for the rapid identification of proteins mediating phosphorylation in signaling cascades after specific stimulation. As a proof of concept, we used the interferon- γ (IFN-γ)-induced phosphorylation of signal transducer and activator of transcription-1 (Stat1) in a human promonocytic cell line, which was previously shown to be deficient in this signaling pathway. By using retroviral cDNA expression libraries, transduced selector cells expressing single cDNAs were stimulated with IFN-γ, then fixed, permeabilized and stained intracellularly for phospho-Stat1 levels. Cells responding to the stimulation, which showed increased levels of phosphorylated Stat1, were enriched using fluorescence activated cell sorting (FACS). Genomic DNA was isolated from the enriched cell population and served as a template for cDNA amplification using PCR. After only one round of selection, a cDNA encoding the β-chain of the IFN-γ receptor (IFNGR2) was obtained and demonstrated to restore the selected phenotype. The approach now allows one to use phospho-events as reporters, alone or in tandem, for screening of signaling network states, overcoming a prior need to rely on the reporter genes that are often only indirect measures of phenotypes desired in a screen

    COP9 signalosome component JAB1/CSN5 is necessary for T cell signaling through LFA-1 and HIV-1 replication.

    Get PDF
    To determine critical host factors involved in HIV-1 replication, a dominant effector genetics approach was developed to reveal signaling pathways on which HIV-1 depends for replication. A large library of short peptide aptamers was expressed via retroviral delivery in T cells. Peptides that interfered with T cell activation-dependent processes that might support HIV-1 replication were identified. One of the selected peptides altered signaling, lead to a difference in T cell activation status, and inhibited HIV-1 replication. The target of the peptide was JAB1/CSN5, a component of the signalosome complex. JAB1 expression overcame the inhibition of HIV-1 replication in the presence of peptide and also promoted HIV-1 replication in activated primary CD4(+) T cells. This peptide blocked physiological release of JAB1 from the accessory T cell surface protein LFA-1, downstream AP-1 dependent events, NFAT activation, and HIV-1 replication. Thus, genetic selection for intracellular aptamer inhibitors of host cell processes proximal to signals at the immunological synapse of T cells can define unique mechanisms important to HIV-1 replication

    A compact and robust diode laser system for atom interferometry on a sounding rocket

    Full text link
    We present a diode laser system optimized for laser cooling and atom interferometry with ultra-cold rubidium atoms aboard sounding rockets as an important milestone towards space-borne quantum sensors. Design, assembly and qualification of the system, combing micro-integrated distributed feedback (DFB) diode laser modules and free space optical bench technology is presented in the context of the MAIUS (Matter-wave Interferometry in Microgravity) mission. This laser system, with a volume of 21 liters and total mass of 27 kg, passed all qualification tests for operation on sounding rockets and is currently used in the integrated MAIUS flight system producing Bose-Einstein condensates and performing atom interferometry based on Bragg diffraction. The MAIUS payload is being prepared for launch in fall 2016. We further report on a reference laser system, comprising a rubidium stabilized DFB laser, which was operated successfully on the TEXUS 51 mission in April 2015. The system demonstrated a high level of technological maturity by remaining frequency stabilized throughout the mission including the rocket's boost phase

    Microwave Assisted Synthesis of Py-Im Polyamides

    Get PDF
    Microwave synthesis was utilized to rapidly build Py-Im polyamides in high yields and purity using Boc-protection chemistry on Kaiser oxime resin. A representative polyamide targeting the 5′-WGWWCW-3′ (W = A or T) subset of the consensus Androgen and Glucocorticoid Response Elements was synthesized in 56% yield after 20 linear steps and HPLC purification. It was confirmed by Mosher amide derivatization of the polyamide that a chiral α-amino acid does not racemize after several additional coupling steps

    Interferometry with Bose-Einstein Condensates in Microgravity

    Full text link
    Atom interferometers covering macroscopic domains of space-time are a spectacular manifestation of the wave nature of matter. Due to their unique coherence properties, Bose-Einstein condensates are ideal sources for an atom interferometer in extended free fall. In this paper we report on the realization of an asymmetric Mach-Zehnder interferometer operated with a Bose-Einstein condensate in microgravity. The resulting interference pattern is similar to the one in the far-field of a double-slit and shows a linear scaling with the time the wave packets expand. We employ delta-kick cooling in order to enhance the signal and extend our atom interferometer. Our experiments demonstrate the high potential of interferometers operated with quantum gases for probing the fundamental concepts of quantum mechanics and general relativity.Comment: 8 pages, 3 figures; 8 pages of supporting materia

    Multiparameter Phospho-Flow Analysis of Lymphocytes in Early Rheumatoid Arthritis: Implications for Diagnosis and Monitoring Drug Therapy

    Get PDF
    The precise mechanisms involved in the initiation and progression of rheumatoid arthritis (RA) are not known. Early stages of RA often have non-specific symptoms, delaying diagnosis and therapy. Additionally, there are currently no established means to predict clinical responsiveness to therapy. Immune cell activation is a critical component therefore we examined the cellular activation of peripheral blood mononuclear cells (PBMCs) in the early stages of RA, in order to develop a novel diagnostic modality.PBMCs were isolated from individuals diagnosed with early RA (ERA) (n = 38), longstanding RA (n = 10), osteoarthritis (OA) (n = 19) and from healthy individuals (n = 10). PBMCs were examined for activation of 15 signaling effectors, using phosphorylation status as a measure of activation in immunophenotyped cells, by flow cytometry (phospho-flow). CD3+CD4+, CD3+CD8+ and CD20+ cells isolated from patients with ERA, RA and OA exhibited activation of multiple phospho-epitopes. ERA patient PBMCs showed a bias towards phosphorylation-activation in the CD4+ and CD20+ compartments compared to OA PBMCs, where phospho-activation was primarily observed in CD8+ cells. The ratio of phospho (p)-AKT/p-p38 was significantly elevated in patients with ERA and may have diagnostic potential. The mean fluorescent intensity (MFI) levels for p-AKT and p-H3 in CD4+, CD8+ and CD20+ T cells correlated directly with physician global assessment scores (MDGA) and DAS (disease activity score). Stratification by medications revealed that patients receiving leflunomide, systemic steroids or anti-TNF therapy had significant reductions in phospho-specific activation compared with patients not receiving these therapies. Correlative trends between medication-associated reductions in the levels of phosphorylation of specific signaling effectors and lower disease activity were observed.Phospho-flow analysis identified phosphorylation-activation of specific signaling effectors in the PB from patients with ERA. Notably, phosphorylation of these signaling effectors did not distinguish ERA from late RA, suggesting that the activation status of discrete cell populations is already established early in disease. However, when the ratio of MFI values for p-AKT and p-p38 is >1.5, there is a high likelihood of having a diagnosis of RA. Our results suggest that longitudinal sampling of patients undergoing therapy may result in phospho-signatures that are predictive of drug responsiveness

    Cell-Surface Marker Signatures for the Isolation of Neural Stem Cells, Glia and Neurons Derived from Human Pluripotent Stem Cells

    Get PDF
    Neural induction of human pluripotent stem cells often yields heterogeneous cell populations that can hamper quantitative and comparative analyses. There is a need for improved differentiation and enrichment procedures that generate highly pure populations of neural stem cells (NSC), glia and neurons. One way to address this problem is to identify cell-surface signatures that enable the isolation of these cell types from heterogeneous cell populations by fluorescence activated cell sorting (FACS).We performed an unbiased FACS- and image-based immunophenotyping analysis using 190 antibodies to cell surface markers on naïve human embryonic stem cells (hESC) and cell derivatives from neural differentiation cultures. From this analysis we identified prospective cell surface signatures for the isolation of NSC, glia and neurons. We isolated a population of NSC that was CD184(+)/CD271(-)/CD44(-)/CD24(+) from neural induction cultures of hESC and human induced pluripotent stem cells (hiPSC). Sorted NSC could be propagated for many passages and could differentiate to mixed cultures of neurons and glia in vitro and in vivo. A population of neurons that was CD184(-)/CD44(-)/CD15(LOW)/CD24(+) and a population of glia that was CD184(+)/CD44(+) were subsequently purified from cultures of differentiating NSC. Purified neurons were viable, expressed mature and subtype-specific neuronal markers, and could fire action potentials. Purified glia were mitotic and could mature to GFAP-expressing astrocytes in vitro and in vivo.These findings illustrate the utility of immunophenotyping screens for the identification of cell surface signatures of neural cells derived from human pluripotent stem cells. These signatures can be used for isolating highly pure populations of viable NSC, glia and neurons by FACS. The methods described here will enable downstream studies that require consistent and defined neural cell populations

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies

    Functional Characterization of FLT3 Receptor Signaling Deregulation in Acute Myeloid Leukemia by Single Cell Network Profiling (SCNP)

    Get PDF
    Molecular characterization of the FMS-like tyrosine kinase 3 receptor (FLT3) in cytogenetically normal acute myeloid leukemia (AML) has recently been incorporated into clinical guidelines based on correlations between FLT3 internal tandem duplications (FLT3-ITD) and decreased disease-free and overall survival. These mutations result in constitutive activation of FLT3, and FLT3 inhibitors are currently undergoing trials in AML patients selected on FLT3 molecular status. However, the transient and partial responses observed suggest that FLT3 mutational status alone does not provide complete information on FLT3 biological activity at the individual patient level. Examination of variation in cellular responsiveness to signaling modulation may be more informative.Using single cell network profiling (SCNP), cells were treated with extracellular modulators and their functional responses were quantified by multiparametric flow cytometry. Intracellular signaling responses were compared between healthy bone marrow myeloblasts (BMMb) and AML leukemic blasts characterized as FLT3 wild type (FLT3-WT) or FLT3-ITD. Compared to healthy BMMb, FLT3-WT leukemic blasts demonstrated a wide range of signaling responses to FLT3 ligand (FLT3L), including elevated and sustained PI3K and Ras/Raf/Erk signaling. Distinct signaling and apoptosis profiles were observed in FLT3-WT and FLT3-ITD AML samples, with more uniform signaling observed in FLT3-ITD AML samples. Specifically, increased basal p-Stat5 levels, decreased FLT3L induced activation of the PI3K and Ras/Raf/Erk pathways, decreased IL-27 induced activation of the Jak/Stat pathway, and heightened apoptotic responses to agents inducing DNA damage were observed in FLT3-ITD AML samples. Preliminary analysis correlating these findings with clinical outcomes suggests that classification of patient samples based on signaling profiles may more accurately reflect FLT3 signaling deregulation and provide additional information for disease characterization and management.These studies show the feasibility of SCNP to assess modulated intracellular signaling pathways and characterize the biology of individual AML samples in the context of genetic alterations
    • …
    corecore