9 research outputs found
Buckling curves of hot rolled H steel sections submitted to fire
Report of the research work at the base of the design equation introduced in Eurocode 3 (EN 1993-1-2) for the stability of steel columns under axial loading or combined axial and bending loading
Stability of Steel Columns in Case of Fire : Numerical Modelling
peer reviewedThis paper describes the numerical simulations that have been performed within the frame of an ECSC reserch project. This research project lead to the buckling curve that has been considered in Eurocode 3 for the design of steel colmns subjected to fire
Development of design rules for steel structures subjected to natural fires in large compartments
In this project was introduced for the first time in Europe the concept of localised fire which was quantified from the experimental tests made by Hasemi in Japan and was finaly introduced in Eurocode 1 (EN 1991-1-2
Subcellular localization of the histidine kinase receptors Sln1p, Nik1p and Chk1p in the yeast CTG clade species Candida guilliermondii
Fungal histidine kinase receptors (HKR) sense and transduce many intra- and extracellular signals that regulate a wide range of physiological processes. Candida CTG clade species commonly possess three types of HKR namely Sln1p (type VI), Nik1p (type III) and Chk1p (type X). Although some recent work has demonstrated the potential involvement of HKR in osmoregulation, morphogenesis, sexual development, adaptation to osmotic stresses and drug resistance in distinct Candida species, little data is available in relation to their subcellular distribution within yeast cells. We describe in this work the comparative subcellular localization of class III, VI, and X HKRs in Candida guilliermondii, a yeast CTG clade species of clinical and biotechnological interest. Using a fluorescent protein fusion approach, we showed that C. guilliermondii Sln1p fused to the yellow fluorescent protein (Sln1p-YFP) appeared to be anchored in the plasma membrane. By contrast, both Chk1p-YFP and YFP-Chk1p were localized in the nucleocytosol of C. guilliermondii transformed cells. Furthermore, while Nik1p-YFP fusion protein always displayed a nucleocytosolic localization, we noted that most of the cells expressing YFP-Nik1p fusion protein displayed an aggregated pattern of fluorescence in the cytosol but not in the nucleus. Interestingly, Sln1p-YFP and Nik1p-YFP fusion protein localization changed in response to hyperosmotic stress by rapidly clustering into punctuated structures that could be associated to osmotic stress signaling. To date, this work provides the first insight into the subcellular localization of the three classes of HKR encoded by CTG clade yeast genomes and constitutes original new data concerning this family of receptors. This represents also an essential prerequisite to open a window into the understanding of the global architecture of HKR-mediated signaling pathways in CTG clade species. © 2014 Elsevier Inc