19 research outputs found

    Antarctic polar vortex dynamics in 2019 and 2020 under the influence of the subtropical stratosphere

    Get PDF
    The trend of strengthening of the Antarctic polar vortex in late spring and early summer (November–December) has been observed in recent decades. A good example of this trend is the dynamics of the Antarctic polar vortex in 2020 when it existed until the last week of December. In 2019, conversely, on the contrary, an unusually early breakup of the polar vortex occurred, a minor sudden stratospheric warming was recorded. Strengthening (or weakening) of the Antarctic polar vortex occurs as a result of an increase (or decrease) in the stratospheric meridional temperature gradient under conditions of growth (or decline) in the temperature of the lower subtropical stratosphere. We considered the temperature variations in the lower subtropical stratosphere in the spring of 2019 and 2020 and the corresponding response of the Antarctic polar vortex. The dynamics of the Antarctic polar vortex in September–October 2019 and November 2020 was largely synchronized with the temperature changes in the lower subtropical stratosphere relative to climatological means. Using correlation analysis, we show that the Antarctic polar vortex dynamics in December is largely due to the temperature changes in the lower subtropical stratosphere that occurred in the second half of November, which manifested itself in 2020.The trend of strengthening of the Antarctic polar vortex in late spring and early summer (November–December) has been observed in recent decades. A good example of this trend is the dynamics of the Antarctic polar vortex in 2020 when it existed until the last week of December. In 2019, conversely, on the contrary, an unusually early breakup of the polar vortex occurred, a minor sudden stratospheric warming was recorded. Strengthening (or weakening) of the Antarctic polar vortex occurs as a result of an increase (or decrease) in the stratospheric meridional temperature gradient under conditions of growth (or decline) in the temperature of the lower subtropical stratosphere. We considered the temperature variations in the lower subtropical stratosphere in the spring of 2019 and 2020 and the corresponding response of the Antarctic polar vortex. The dynamics of the Antarctic polar vortex in September–October 2019 and November 2020 was largely synchronized with the temperature changes in the lower subtropical stratosphere relative to climatological means. Using correlation analysis, we show that the Antarctic polar vortex dynamics in December is largely due to the temperature changes in the lower subtropical stratosphere that occurred in the second half of November, which manifested itself in 2020

    Early Mesozoic lamproites and monzonitoids of southeastern Gorny Altai: geochemistry, Sr–Nd isotope composition, and sources of melts

    No full text
    Small intrusions of lamprophyres and lamproites (Chuya complex) and K-monzonitoids (Tarkhata and Terandzhik complexes) are widespread in southeastern Gorny Altai. Geochronological (U-Pb and Ar-Ar) isotope studies show their formation in the Early-Middle Triassic (~ 234-250 Ma). Lamproites have been revealed within two magmatic areas and correspond in geochemical parameters to the classical Mediterranean and Tibet orogenic lamproites. According to isotope data ((87Sr/86Sr)T = 0.70850-0.70891, (143Nd/144Nd)T = 0.512157-0.512196, 206Pb/204Pb = 17.95-18.05) and Th/La and Sm/La values, the Chuya lamproites and lamprophyres melted out from the enriched lithospheric mantle with the participation of DM, EM1, EM2, and SALATHO. The monzonitoid series of the Tarkhata and Terandzhik complexes are similar in petrographic and geochemical compositions but differ significantly in Sr-Nd isotope composition: The Tarkhata monzonitoids are close to the Chuya lamproites, whereas the Terandzhik ones show a higher portion of DM ((87Sr/86Sr)T = 0.70434-0.70497, (143Nd/144Nd)T = 0.512463-0.512487) in their source, which suggests its shallower depth of occurrence and the higher degree of its partial melting as compared with the derivates of the Chuya and Tarkhata complexes. The studied rock associations tentatively formed in the postcollisional setting under the impact of the Siberian superplume
    corecore