1,006 research outputs found

    A Consistent Model of the Accretion Shock Region in Classical T Tauri Stars

    Get PDF
    We develop a consistent model of the accretion shock region in Classical T Tauri Stars (CTTSs). The initial conditions of the post-shock flow are determined by the irradiated shock precursor and the ionization state is calculated without assuming ionization equilibrium. Comparison with observations of the C IV resonance lines (λλ 1550 Å) for CTTSs indicate that the post-shock emission predicted by the model is too large, for a reasonable range of parameters. If the model is to reproduce the observations, C IV emission from CTTSs has to be dominated by pre-shock emission, for stars with moderate to large accretion rates. For stars with low accretion rates, the observations suggest a comparable contribution between the pre- and post-shock regions. These conclusions are consistent with previous results indicating that the post-shock will be buried under the stellar photosphere for moderate to large accretion rates

    Possible detection of a magnetic field in T Tauri

    Get PDF
    Medium-resolution (R≃15000)(R\simeq 15000) circular spectropolarimetry of T Tauri is presented. The star was observed twice: on November 11, 1996 and January 22, 2002. Weak circular polarization has been found in photospheric absorption lines, indicating a mean surface longitudinal magnetic field B∄B_{\|} of 160±40160\pm 40 G and 140±50140\pm 50 G at the epoch of the first and second observations respectively. While these values are near the detection limit of our apparatus, we belive that they are real. In any case one can conclude from our data that B∄B_{\|} of T Tau does not significantly exceed 200 G, which is much less than surface magnetic field strength of the star (>2.3>2.3 kG) found by Guenther et al. (1999) and Johns-Krull et al. (2000). We discuss possible reasons of this difference.Comment: 5 pages, 3 figure

    A Young Planet Search in Visible and IR Light: DN Tau, V836 Tau, and V827 Tau

    Full text link
    In searches for low-mass companions to late-type stars, correlation between radial velocity variations and line bisector slope changes indicates contamination by large starspots. Two young stars demonstrate that this test is not sufficient to rule out starspots as a cause of radial velocity variations. As part of our survey for substellar companions to T Tauri stars, we identified the ~2 Myr old planet host candidates DN Tau and V836 Tau. In both cases, visible light radial velocity modulation appears periodic and is uncorrelated with line bisector span variations, suggesting close companions of several M_Jup in these systems. However, high-resolution, infrared spectroscopy shows that starspots cause the radial velocity variations. We also report unambiguous results for V827 Tau, identified as a spotted star on the basis of both visible light and infrared spectroscopy. Our results suggest that infrared follow up observations are critical for determining the source of radial velocity modulation in young, spotted stars.Comment: Accepted for publication in the Astrophysical Journal Letter

    The Magnetic Fields of Classical T Tauri Stars

    Full text link
    We report new magnetic field measurements for 14 classical T Tauri stars (CTTSs). We combine these data with one previous field determination in order to compare our observed field strengths with the field strengths predicted by magnetospheric accretion models. We use literature data on the stellar mass, radius, rotation period, and disk accretion rate to predict the field strength that should be present on each of our stars according to these magnetospheric accretion models. We show that our measured field values do not correlate with the field strengths predicted by simple magnetospheric accretion theory. We also use our field strength measurements and literature X-ray luminosity data to test a recent relationship expressing X-ray luminosity as a function of surface magnetic flux derived from various solar feature and main sequence star measurements. We find that the T Tauri stars we have observed have weaker than expected X-ray emission by over an order of magnitude on average using this relationship. We suggest the cause for this is actually a result of the very strong fields on these stars which decreases the efficiency with which gas motions in the photosphere can tangle magnetic flux tubes in the corona.Comment: 25 pages, 5 figure

    Star Spot Induced Radial Velocity Variability in LkCa 19

    Full text link
    We describe a new radial velocity survey of T Tauri stars and present the first results. Our search is motivated by an interest in detecting massive young planets, as well as investigating the origin of the brown dwarf desert. As part of this survey, we discovered large-amplitude, periodic, radial velocity variations in the spectrum of the weak line T Tauri star LkCa 19. Using line bisector analysis and a new simulation of the effect of star spots on the photometric and radial velocity variability of T Tauri stars, we show that our measured radial velocities for LkCa19 are fully consistent with variations caused by the presence of large star spots on this rapidly rotating young star. These results illustrate the level of activity-induced radial velocity noise associated with at least some very young stars. This activity-induced noise will set lower limits on the mass of a companion detectable around LkCa 19, and similarly active young stars.Comment: ApJ accepted, 27 pages, 12 figures, aaste

    Magnetospheric Accretion in Close Pre-Main-Sequence Binaries

    Get PDF
    The transfer of matter between a circumbinary disk and a young binary system remains poorly understood, obscuring the interpretation of accretion indicators. To explore the behavior of these indicators in multiple systems, we have performed the first systematic time-domain study of young binaries in the ultraviolet. We obtained far- and near-ultraviolet HST/COS spectra of the young spectroscopic binaries DQ Tau and UZ Tau E. Here we focus on the continuum from 2800 to 3200 Å and on the C iv doublet (λλ1548.19, 1550.77 Å) as accretion diagnostics. Each system was observed over three or four consecutive binary orbits, at phases ~0, 0.2, 0.5, and 0.7. Those observations are complemented by ground-based U-band measurements. Contrary to model predictions, we do not detect any clear correlation between accretion luminosity and phase. Further, we do not detect any correlation between C iv flux and phase. For both stars the appearance of the C iv line is similar to that of single Classical T Tauri Stars (CTTSs), despite the lack of stable long-lived circumstellar disks. However, unlike the case in single CTTSs, the narrow and broad components of the C iv lines are uncorrelated, and we argue that the narrow component is powered by processes other than accretion, such as flares in the stellar magnetospheres and/or enhanced activity in the upper atmosphere. We find that both stars contribute equally to the narrow component C iv flux in DQ Tau, but the primary dominates the narrow component C iv emission in UZ Tau E. The C iv broad component flux is correlated with other accretion indicators, suggesting an accretion origin. However, the line is blueshifted, which is inconsistent with its origin in an infall flow close to the star. It is possible that the complicated geometry of the region, as well as turbulence in the shock region, are responsible for the blueshifted line profiles
    • 

    corecore