8,614 research outputs found

    Spoorweë en hawens in Afrika met spesiale verwysing na Suid-Afrika

    Get PDF
    Die mens en alle aardse goedere is uiteraard gebonde aan ruimte en tyd. Hierdie gebondenheid beperk die maatskaplike, kulturele en ekonomiese ontwikkeling van die mens en dit is die taak en funksie van vervoer om hierdie gebondenheid te oorbrug deur mense en goedere van een plek na ’n ander te verskuif in die mins moontlike tyd. Uit die drang van die mens tot verbetering van homself en sy omgewing het dan ook die moderne vervoerstelsels van die wêreld ontstaan

    Mg I emission lines at 12 and 18 micrometer in K giants

    Full text link
    The solar Mg I emission lines at 12 micrometer have already been observed and analyzed well. Previous modeling attempts for other stars have, however, been made only for Procyon and two cool evolved stars, with unsatisfactory results for the latter. We present high-resolution observational spectra for the K giants Pollux, Arcturus, and Aldebaran, which show strong Mg I emission lines at 12 micrometer as compared to the Sun. We also present the first observed stellar emission lines from Mg I at 18 micrometer and from Al I, Si I, and presumably Ca I at 12 micrometer. To produce synthetic line spectra, we employ standard non-LTE modeling for trace elements in cool stellar photospheres. We compute model atmospheres with the MARCS code, apply a comprehensive magnesium model atom, and use the radiative transfer code MULTI to solve for the magnesium occupation numbers in statistical equilibrium. We successfully reproduce the observed Mg I emission lines simultaneously in the giants and in the Sun, but show how the computed line profiles depend critically on atomic input data and how the inclusion of energy levels with n > 9 and collisions with neutral hydrogen are necessary to obtain reasonable fits.Comment: 9 pages, 6 figures, accepted for publication in Astronomy & Astrophysic

    Geothermal reservoir engineering research

    Get PDF
    The Stanford University research program on the study of stimulation and reservoir engineering of geothermal resources commenced as an interdisciplinary program in September, 1972. The broad objectives of this program have been: (1) the development of experimental and computational data to evaluate the optimum performance of fracture-stimulated geothermal reservoirs; (2) the development of a geothermal reservoir model to evaluate important thermophysical, hydrodynamic, and chemical parameters based on fluid-energy-volume balances as part of standard reservoir engineering practice; and (3) the construction of a laboratory model of an explosion-produced chimney to obtain experimental data on the processes of in-place boiling, moving flash fronts, and two-phase flow in porous and fractured hydrothermal reservoirs

    Learning Deep Similarity Metric for 3D MR-TRUS Registration

    Full text link
    Purpose: The fusion of transrectal ultrasound (TRUS) and magnetic resonance (MR) images for guiding targeted prostate biopsy has significantly improved the biopsy yield of aggressive cancers. A key component of MR-TRUS fusion is image registration. However, it is very challenging to obtain a robust automatic MR-TRUS registration due to the large appearance difference between the two imaging modalities. The work presented in this paper aims to tackle this problem by addressing two challenges: (i) the definition of a suitable similarity metric and (ii) the determination of a suitable optimization strategy. Methods: This work proposes the use of a deep convolutional neural network to learn a similarity metric for MR-TRUS registration. We also use a composite optimization strategy that explores the solution space in order to search for a suitable initialization for the second-order optimization of the learned metric. Further, a multi-pass approach is used in order to smooth the metric for optimization. Results: The learned similarity metric outperforms the classical mutual information and also the state-of-the-art MIND feature based methods. The results indicate that the overall registration framework has a large capture range. The proposed deep similarity metric based approach obtained a mean TRE of 3.86mm (with an initial TRE of 16mm) for this challenging problem. Conclusion: A similarity metric that is learned using a deep neural network can be used to assess the quality of any given image registration and can be used in conjunction with the aforementioned optimization framework to perform automatic registration that is robust to poor initialization.Comment: To appear on IJCAR

    A detector for continuous measurement of ultra-cold atoms in real time

    Full text link
    We present the first detector capable of recording high-bandwidth real time atom number density measurements of a Bose Einstein condensate. Based on a two-color Mach-Zehnder interferometer, our detector has a response time that is six orders of magnitude faster than current detectors based on CCD cameras while still operating at the shot-noise limit. With this minimally destructive system it may be possible to implement feedback to stabilize a Bose-Einstein condensate or an atom laser.Comment: 3 pages, 3 figures, submitted to optics letter

    About the initial mass function and HeII emission in young starbursts

    Get PDF
    We demonstrate that it is crucial to account for the evolution of the starburst population in order to derive reliable numbers of O stars from integrated spectra for burst ages t > 2 - 3 Myr. In these cases the method of Vacca & Conti (1992) and Vacca (1994) systematically underestimates the number of O stars. Therefore the current WR/O number ratios in Wolf-Rayet (WR) galaxies are overestimated. This questions recent claims about flat IMF slopes (alpha ~ 1-2) in these objects. If the evolution of the burst is properly treated we find that the observations are indeed compatible with a Salpeter IMF, in agreement with earlier studies. Including recent predictions from non-LTE, line blanketed model atmospheres which account for stellar winds, we synthesize the nebular and WR HeII 4686 emission in young starbursts. For metallicities 1/5 <= Z/Z_sun <= 1 we predict a strong nebular HeII emission due to a significant fraction of WC stars in early WR phases of the burst. For other metallicities broad WR emission will always dominate the HeII emission. Our predictions of the nebular HeII intensity agree well with the observations in WR galaxies and an important fraction of the giant HII regions where nebular HeII is detected. We propose further observational tests of our result.Comment: ApJ Letters, accepted. 8 pages LaTeX including 3 PostScript figures, uses AASTeX and psfig macros. PostScript file also available at ftp://ftp.stsci.edu/outside-access/out.going/schaerer/imf.p
    corecore