28 research outputs found

    Toothy craniopharyngioma : a literature review and case report of craniopharyngioma with extensive odontogenic differentiation and tooth formation

    Get PDF
    No abstract available.http://www.springerlink.com/content/100510

    Natural history, with clinical, biochemical and molecular characterization, of classical homocystinuria in the Qatari population

    Get PDF
    Classical homocystinuria (HCU) is the most common inborn error of metabolism in Qatar, with an incidence of 1:1800, and is caused by the Qatari founder p.R336C mutation in the CBS gene. This study describes the natural history and clinical manifestations of HCU in the Qatari population. A single center study was performed between 2016 and 2017 in 126 Qatari patients, from 82 families. Detailed clinical and biochemical data were collected and Stanford-Binet intelligence, quality of life and adherence to treatment assessments were conducted prospectively. Patients were assigned to one of three groups, according to mode of diagnosis: 1) Late Diagnosis Group (LDG), 2) Family Screening Group (FSG), and 3) Newborn Screening Group (NSG). Of the 126 patients, 69 (55%) were in the LDG, 44 (35%) in the NSG, and 13 (10%) in the FSG. The leading factors for diagnosis in the LDG were ocular manifestations (49%), neurological manifestations (45%), thromboembolic events (4%), and hyperactivity and behavioral changes (1%). Both FSG and NSG groups were asymptomatic at time of diagnosis. NSG had significantly higher IQ, QoL, and adherence values compared with the LDG. The LDG and FSG had significantly higher Met levels than the NSG. The LDG also had significantly higher tHcy levels than the NSG and FSG. Regression analysis confirmed these results even when adjusting for age at diagnosis, current age or adherence. These findings increase understanding of the natural history of HCU and highlight the importance of early diagnosis and treatment. This article is protected by copyright. All rights reserved.Qatar National Research Fund , Grant/Award Number: 7‐355‐3‐08

    Children reading to dogs: a systematic review of the literature

    Get PDF
    Background Despite growing interest in the value of human-animal interactions (HAI) to human mental and physical health the quality of the evidence on which postulated benefits from animals to human psychological health are based is often unclear. To date there exist no systematic reviews on the effects of HAI in educational settings specifically focussing on the perceived benefits to children of reading to dogs. With rising popularity and implementation of these programmes in schools, it is essential that the evidence base exploring the pedagogic value of these initiatives is well documented. Methods Using PRISMA guidelines we systematically investigated the literature reporting the pedagogic effects of reading to dogs. Because research in this area is in the early stages of scientific enquiry we adopted broad inclusion criteria, accepting all reports which discussed measurable effects related to the topic that were written in English. Multiple online databases were searched during January-March 2015; grey literature searches were also conducted. The search results which met the inclusion criteria were evaluated, and discussed, in relation to the Oxford Centre for Evidence Based Medicine levels of evidence; 27 papers were classified as Level 5, 13 as Level 4, 7 as Level 2c and 1 as Level 2b. Conclusion The evidence suggests that reading to a dog may have a beneficial effect on a number of behavioural processes which contribute to a positive effect on the environment in which reading is practiced, leading to improved reading performance. However, the evidence base on which these inferences are made is of low quality. There is a clear need for the use of higher quality research methodologies and the inclusion of appropriate controls in order to draw causal inferences on whether or how reading to dogs may benefit children’s reading practices. The mechanisms for any effect remain a matter of conjectur

    Analysis of the Qatari R336C Cystathionine ÎČ-Synthase Protein in Mice.

    No full text
    Classical homocystinuria is a recessive inborn error of metabolism caused by mutations in the cystathionine beta-synthase (CBS) gene. The highest incidence of CBS deficiency in the world is found in the country of Qatar due to the combination of high rates of consanguinity and the presence of a founder mutation, c.1006C>T (p.R336C). This mutation does not respond to pyridoxine and is considered severe. Here we describe the creation of a mouse that is null for the mouse Cbs gene and expresses human p.R336C CBS from a zinc-inducible transgene (Tg-R336C Cbs ). Zinc treated Tg-R336C Cbs mice have extreme elevation in both serum tHcy and liver tHcy compared to control transgenic mice. Both the steady-state protein levels and CBS enzyme activity levels in liver lysates from Tg-R336C Cbs mice are significantly reduced compared to that found in Tg-hCBS Cbs mice expressing wild-type human CBS. Treatment of Tg-R336C Cbs mice with the proteasome inhibitor bortezomib results in stabilization of liver CBS protein and an increase in activity to levels found in corresponding Tg-hCBS Cbs wild type mice. Surprisingly, serum tHcy did not fully correct even though liver enzyme activity was as high as control animals. This discrepancy is explained by in vitro enzymatic studies of mouse liver extracts showing that p.R336C causes reduced binding affinity for the substrate serine by almost seven-fold and significantly increased dependence on pyridoxal phosphate in the reaction buffer. These studies demonstrate that the p.R336C alteration effects both protein stability and substrate/cofactor binding.National Institute of Diabetes and Digestive and Kidney Diseases, Grant/Award Number: DK101404; Qatar Foundation, Grant/Award Number: NPR7‐355‐3‐088; NPRP grant, Grant/Award Number: NPR7‐355‐3‐088; National Institutes of Health, Grant/Award Numbers: P30 CA006927, R01 DK10140

    In silico and in vivo models for Qatari-specific classical homocystinuria as basis for development of novel therapies

    Full text link
    Homocystinuria is a rare inborn error of methionine metabolism caused by cystathionine ÎČ-synthase (CBS) deficiency. The prevalence of homocystinuria in Qatar is 1:1,800 births, mainly due to a founder Qatari missense mutation, c.1006C>T; p.R336C (p.Arg336Cys). We characterized the structure-function relationship of the p.R336C-mutant protein and investigated the effect of different chemical chaperones to restore p.R336C-CBS activity using three models: in silico, ΔCBS yeast, and CRISPR/Cas9 p.R336C knock-in HEK293T and HepG2 cell lines. Protein modeling suggested that the p.R336C induces severe conformational and structural changes, perhaps influencing CBS activity. Wild-type CBS, but not the p.R336C mutant, was able to restore the yeast growth in ΔCBS-deficient yeast in a complementation assay. The p.R336C knock-in HEK293T and HepG2 cells decreased the level of CBS expression and reduced its structural stability; however, treatment of the p.R336C knock-in HEK293T cells with betaine, a chemical chaperone, restored the stability and tetrameric conformation of CBS, but not its activity. Collectively, these results indicate that the p.R336C mutation has a deleterious effect on CBS structure, stability, and activity, and using the chemical chaperones approach for treatment could be ineffective in restoring p.R336C CBS activity

    In silico and in vivo models for Qatari-Specific classical homocystinuria as basis for development of novel therapies.

    No full text
    Homocystinuria is a rare inborn error of methionine metabolism caused by cystathionine ÎČ-synthase (CBS) deficiency. The prevalence of homocystinuria in Qatar is 1:1,800 births, mainly due to a founder Qatari missense mutation, c.1006C>T; p.R336C (p.Arg336Cys). We characterized the structure-function relationship of the p.R336C mutant protein, and investigated the effect of different chemical chaperones to restore p.R336C-CBS activity using three models: In silico, ΔCBS yeast, and CRISPR/Cas9 p.R336C knock-in HEK293T and HepG2 cell lines. Protein modeling suggested that the p.R336C induces severe conformational and structural changes, perhaps influencing CBS activity. Wildtype CBS, but not the p.R336C mutant, was able to restore the yeast growth in ΔCBS deficient yeast in a complementation assay. The p.R336C knock-in HEK293T and HepG2 cells decreased the level of CBS expression and reduce its structural stability; however, treatment of the p.R336C knock-in HEK293T cells with betaine, a chemical chaperone, restored the stability and tetrameric conformation of CBS, but not its activity. Collectively, these results indicate that the p.R336C mutation has a deleterious effect on CBS structure, stability, and activity, and using the chemical chaperones approach for treatment could be ineffective in restoring p.R336C CBS activity. This article is protected by copyright. All rights reserved.QNR

    Tuning Passive Mechanics through Differential Splicing of Titin during Skeletal Muscle Development

    Get PDF
    During postnatal development, major changes in mechanical properties of skeletal muscle occur. We investigated passive properties of skeletal muscle in mice and rabbits that varied in age from 1 day to ∌1 year. Neonatal skeletal muscle expressed large titin isoforms directly after birth, followed by a gradual switch toward progressively smaller isoforms that required weeks-to-months to be completed. This suggests an extremely high plasticity of titin splicing during skeletal muscle development. Titin exon microarray analysis showed increased expression of a large group of exons in neonatal muscle, when compared to adult muscle transcripts, with the majority of upregulated exons coding for the elastic proline-glutamate-valine-lysine (PEVK) region of titin. Protein analysis supported expression of a significantly larger PEVK segment in neonatal muscle. In line with these findings, we found >50% lower titin-based passive stiffness of neonatal muscle when compared to adult muscle. Inhibiting 3,5,3â€Č-tri-iodo-L-thyronine and 3,5,3â€Č,5â€Č-tetra-iodo-L-thyronine secretion did not alter isoform switching, suggesting no major role for thyroid hormones in regulating differential titin splicing during postnatal development. In summary, our work shows that stiffening of skeletal muscle during postnatal development occurs through a decrease in titin isoform size, due mainly to a marked restructuring of the PEVK region of titin
    corecore