11 research outputs found

    Mutations of the EPHB6 Receptor Tyrosine Kinase Induce a Pro-Metastatic Phenotype in Non-Small Cell Lung Cancer

    Full text link
    Alterations of Eph receptor tyrosine kinases are frequent events in human cancers. Genetic variations of EPHB6 have been described but the functional outcome of these alterations is unknown. The current study was conducted to screen for the occurrence and to identify functional consequences of EPHB6 mutations in non-small cell lung cancer. Here, we sequenced the entire coding region of EPHB6 in 80 non-small cell lung cancer patients and 3 tumor cell lines. Three potentially relevant mutations were identified in primary patient samples of NSCLC patients (3.8%). Two point mutations led to instable proteins. An in frame deletion mutation (del915-917) showed enhanced migration and accelerated wound healing in vitro. Furthermore, the del915-917 mutation increased the metastatic capability of NSCLC cells in an in vivo mouse model. Our results suggest that EPHB6 mutations promote metastasis in a subset of patients with non-small cell lung cancer

    A Phase I Dose Escalation Study of the Triple Angiokinase Inhibitor Nintedanib Combined with Low-Dose Cytarabine in Elderly Patients with Acute Myeloid Leukemia

    Full text link
    Nintedanib (BIBF 1120), a potent multikinase inhibitor of VEGFR-1/-2/-3, FGFR-1/-2/-3 and PDGFR-α/-β, exerts growth inhibitory and pro-apoptotic effects in myeloid leukemic cells, especially when used in combination with cytarabine. This phase I study evaluated nintedanib in combination with low-dose cytarabine (LDAC) in elderly patients with untreated or relapsed/refractory acute myeloid leukemia (AML) ineligible for intensive chemotherapy in a 3+3 design. Nintedanib (dose levels 100, 150, and 200 mg orally twice daily) and LDAC (20 mg subcutaneous injection twice daily for 10 days) were administered in 28-day cycles. Dose-limiting toxicity (DLT) was defined as non-hematological severe adverse reaction CTC grade ≥ 4 with possible or definite relationship to nintedanib. Between April 2012 and October 2013, 13 patients (median age 73 [range: 62–86] years) were enrolled. One patient did not receive study medication and was replaced. Nine (69%) patients had relapsed or refractory disease and 6 (46%) patients had unfavorable cytogenetics. The most frequently reported treatment-related adverse events (AE) were gastrointestinal events. Twelve SAEs irrespective of relatedness were reported. Two SUSARs were observed, one fatal hypercalcemia and one fatal gastrointestinal infection. Two patients (17%) with relapsed AML achieved a complete remission (one CR, one CRi) and bone marrow blast reductions without fulfilling PR criteria were observed in 3 patients (25%). One-year overall survival was 33%. Nintedanib combined with LDAC shows an adequate safety profile and survival data are promising in a difficult-to-treat patient population. Continuation of this trial with a phase II recommended dose of 2 x 200 mg nintedanib in a randomized, placebo-controlled phase II study is planned. The trial is registered to EudraCT as 2011-001086-41

    Feasibility of Azacitidine Added to Standard Chemotherapy in Older Patients with Acute Myeloid Leukemia — A Randomised SAL Pilot Study

    Full text link
    Introduction: Older patients with acute myeloid leukemia (AML) experience short survival despite intensive chemotherapy. Azacitidine has promising activity in patients with low proliferating AML. The aim of this dose-finding part of this trial was to evaluate feasibility and safety of azacitidine combined with a cytarabine- and daunorubicin-based chemotherapy in older patients with AML. Trial Design: Prospective, randomised, open, phase II trial with parallel group design and fixed sample size. Patients and Methods: Patients aged 61 years or older, with untreated acute myeloid leukemia with a leukocyte count of ,20,000/ml at the time of study entry and adequate organ function were eligible. Patients were randomised to receive azacitidine either 37.5 (dose level 1) or 75 mg/sqm (dose level 2) for five days before each cycle of induction (7+3 cytarabine plus daunorubicine) and consolidation (intermediate-dose cytarabine) therapy. Dose-limiting toxicity was the primary endpoint. Results: Six patients each were randomised into each dose level and evaluable for analysis. No dose-limiting toxicity occurred in either dose level. Nine serious adverse events occurred in five patients (three in the 37.5 mg, two in the 75 mg arm) with two fatal outcomes. Two patients at the 37.5 mg/sqm dose level and four patients at the 75 mg/sqm level achieved a complete remission after induction therapy. Median overall survival was 266 days and median event-free survival 215 days after a median follow up of 616 days. Conclusions: The combination of azacitidine 75 mg/sqm with standard induction therapy is feasible in older patients with AML and was selected as an investigational arm in the randomised controlled part of this phase-II study, which is currently halted due to an increased cardiac toxicity observed in the experimental arm. Trial Registration: This trial is registered at clinical trials.gov (identifier: NCT00915252)

    Patients with Acute Myeloid Leukemia Admitted to Intensive Care Units: Outcome Analysis and Risk Prediction

    Get PDF
    Background This retrospective, multicenter study aimed to reveal risk predictors for mortality in the intensive care unit (ICU) as well as survival after ICU discharge in patients with acute myeloid leukemia (AML) requiring treatment in the ICU. Methods and Results Multivariate analysis of data for 187 adults with AML treated in the ICU in one institution revealed the following as independent prognostic factors for death in the ICU: arterial oxygen partial pressure below 72 mmHg, active AML and systemic inflammatory response syndrome upon ICU admission, and need for hemodialysis and mechanical ventilation in the ICU. Based on these variables, we developed an ICU mortality score and validated the score in an independent cohort of 264 patients treated in the ICU in three additional tertiary hospitals. Compared with the Simplified Acute Physiology Score (SAPS) II, the Logistic Organ Dysfunction (LOD) score, and the Sequential Organ Failure Assessment (SOFA) score, our score yielded a better prediction of ICU mortality in the receiver operatorcharacteristics (ROC) analysis (AUC = 0.913 vs. AUC = 0.710 [SAPS II], AUC = 0.708 [LOD], and 0.770 [SOFA] in the training cohort; AUC = 0.841 for the developed score vs. AUC = 0.730 [SAPSII], AUC = 0.773 [LOD], and 0.783 [SOFA] in the validation cohort). Factors predicting decreased survival after ICU discharge were as follows: relapse or refractory disease, previous allogeneic stem cell transplantation, time between hospital admission and ICU admission, time spent in ICU, impaired diuresis, Glasgow Coma Scale = 25% at ICU admission. Based on these factors, an ICU survival score was created and used for risk stratification into three risk groups. This stratification discriminated distinct survival rates after ICU discharge. Conclusions Our data emphasize that although individual risks differ widely depending on the patient and disease status, a substantial portion of critically ill patients with AML benefit from intensive care

    Correlation of predicted versus actual ICU mortality (intensive care unit) in the validation cohort.

    No full text
    <p>(A) Receiver operator characteristics for the different scores with the area under the curve (AUC). Score 1: novel score. Score 2: SAPS II. Score 3: LOD. Score 4: SOFA. (B) Predicted versus actual ICU mortality. Patients were classified according to their individual predicted mortality in the ICU (below versus ≥50%; boxes represent the IQR; whiskers indicate the minimum and maximum values, but are not longer than 1.5 times the length of the corresponding box; values outside this range are represented by separate dots), which is plotted against the actual mortality rate.</p

    Correlation of predicted versus actual ICU mortality (intensive care unit) in the training cohort.

    No full text
    <p>(A) Receiver operator characteristics for the different scores with the area under the curve (AUC). Score 1: novel mortality score. Score 2: SAPS II. Score 3: LOD. Score 4: SOFA. (B) Predicted versus actual ICU mortality. Patients were classified according to their individual predicted ICU mortality (below versus ≥50%; boxes represent the interquartile range (IQR); whiskers indicate the minimum and maximum values but are not longer than 1.5 times the length of the corresponding box; values outside this range are represented by separate dots), which is plotted against the actual mortality rate for the three groups.</p
    corecore