3,694 research outputs found
Kinetics of step bunching during growth: A minimal model
We study a minimal stochastic model of step bunching during growth on a
one-dimensional vicinal surface. The formation of bunches is controlled by the
preferential attachment of atoms to descending steps (inverse Ehrlich-Schwoebel
effect) and the ratio of the attachment rate to the terrace diffusion
coefficient. For generic parameters () the model exhibits a very slow
crossover to a nontrivial asymptotic coarsening exponent .
In the limit of infinitely fast terrace diffusion () linear coarsening
( = 1) is observed instead. The different coarsening behaviors are
related to the fact that bunches attain a finite speed in the limit of large
size when , whereas the speed vanishes with increasing size when .
For an analytic description of the speed and profile of stationary
bunches is developed.Comment: 8 pages, 10 figure
An Exactly Solved Model of Three Dimensional Surface Growth in the Anisotropic KPZ Regime
We generalize the surface growth model of Gates and Westcott to arbitrary
inclination. The exact steady growth velocity is of saddle type with principal
curvatures of opposite sign. According to Wolf this implies logarithmic height
correlations, which we prove by mapping the steady state of the surface to
world lines of free fermions with chiral boundary conditions.Comment: 9 pages, REVTEX, epsf, 3 postscript figures, submitted to J. Stat.
Phys, a wrong character is corrected in eqs. (31) and (32
Records and sequences of records from random variables with a linear trend
We consider records and sequences of records drawn from discrete time series
of the form , where the are independent and identically
distributed random variables and is a constant drift. For very small and
very large drift velocities, we investigate the asymptotic behavior of the
probability of a record occurring in the th step and the
probability that all entries are records, i.e. that . Our work is motivated by the analysis of temperature time series in
climatology, and by the study of mutational pathways in evolutionary biology.Comment: 21 pages, 7 figure
Scaling of Local Slopes, Conservation Laws and Anomalous Roughening in Surface Growth
We argue that symmetries and conservation laws greatly restrict the form of
the terms entering the long wavelength description of growth models exhibiting
anomalous roughening. This is exploited to show by dynamic renormalization
group arguments that intrinsic anomalous roughening cannot occur in local
growth models. However some conserved dynamics may display super-roughening if
a given type of terms are present.Comment: To appear in Phys. Rev. Lett., 4 pages in RevTeX style, no fig
Field-controlled phase separation at the impurity-induced magnetic ordering in the spin-Peierls magnet CuGeO3
The fraction of the paramagnetic phase surviving at the impurity-induced
antiferromagnetic order transition of the doped spin-Peierls magnet
Cu(1-x)Mg(x)GeO3 (x < 5%) is found to increase with an external magnetic field.
This effect is qualitatively explained by the competition of Zeeman energy and
exchange interaction between local antiferromagnetic clustersComment: 4 pages 4 figure
Stretched exponentials and power laws in granular avalanching
We introduce a model for granular avalanching which exhibits both stretched exponential and power law avalanching over its parameter range. Two modes of transport are incorporated, a rolling layer consisting of individual particles and the overdamped, sliding motion of particle clusters. The crossover in behaviour observed in experiments on piles of rice is attributed to a change in the dominant mode of transport. We predict that power law avalanching will be observed whenever surface flow is dominated by clustered motion.
Comment: 8 pages, more concise and some points clarified
Driven Lattice Gases with Quenched Disorder: Exact Results and Different Macroscopic Regimes
We study the effect of quenched spatial disorder on the steady states of
driven systems of interacting particles. Two sorts of models are studied:
disordered drop-push processes and their generalizations, and the disordered
asymmetric simple exclusion process. We write down the exact steady-state
measure, and consequently a number of physical quantities explicitly, for the
drop-push dynamics in any dimensions for arbitrary disorder. We find that three
qualitatively different regimes of behaviour are possible in 1- disordered
driven systems. In the Vanishing-Current regime, the steady-state current
approaches zero in the thermodynamic limit. A system with a non-zero current
can either be in the Homogeneous regime, chracterized by a single macroscopic
density, or the Segregated-Density regime, with macroscopic regions of
different densities. We comment on certain important constraints to be taken
care of in any field theory of disordered systems.Comment: RevTex, 17pages, 18 figures included using psfig.st
Residual Symmetries in the Spectrum of Periodically Driven Alkali Rydberg States
We identify a fundamental structure in the spectrum of microwave driven
alkali Rydberg states, which highlights the remnants of the Coulomb symmetry in
the presence of a non-hydrogenic core. Core-induced corrections with respect to
the hydrogen spectrum can be accounted for by a perturbative approach.Comment: 7 pages, 2 figures, to be published in Europhysics Letter
Smoothly-varying hopping rates in driven flow with exclusion
We consider the one-dimensional totally asymmetric simple exclusion process
(TASEP) with position-dependent hopping rates. The problem is solved,in a mean
field/adiabatic approximation, for a general (smooth) form of spatial rate
variation. Numerical simulations of systems with hopping rates varying linearly
against position (constant rate gradient), for both periodic and open boundary
conditions, provide detailed confirmation of theoretical predictions,
concerning steady-state average density profiles and currents, as well as
open-system phase boundaries, to excellent numerical accuracy.Comment: RevTeX 4.1, 14 pages, 9 figures (published version
- …