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Abstract. We introduce a model for granular surface flow which exhibits both

stretched exponential and power law avalanching over its parameter range. Two modes

of transport are incorporated, a rolling layer consisting of individual particles and the

overdamped, sliding motion of particle clusters. The crossover in behaviour observed

in experiments on piles of rice is attributed to a change in the dominant mode of

transport. We predict that power law avalanching will be observed whenever surface

flow is dominated by clustered motion.
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Although the sandpile model was introduced some time ago [1], its relevance to real

granular materials remains unclear. It predicts that a pile formed by adding particles

one at a time to a flat surface with open boundaries will naturally evolve to a continuous

phase transition, illustrating the concept of self–organised criticality or SOC. The signal

that such a critical state has been reached is when the spectrum of avalanche sizes

becomes scale-invariant; that is, power law in form. By contrast, experiments using sand

and beads have shown that, if anything, the generic form for the avalanche spectrum is

stretched exponential rather than power law [2]—[7]. Whatever else the sandpile model

may be, it is clearly not a very good model for piles of sand.

A cursory observation of real sandpiles in action easily reveals the shortcomings of

the model. Inertia has been neglected [8]—[10] and the particles are assumed to move

purely by a series of toppling events, defined in terms of the relative instabilities of local

regions of the pile’s surface. In fact, real particles gain kinetic energy as they accelerate

downslope, dislodging other particles from the static bulk which combine to form a

rolling layer. An intuitively more plausible approach treats this rolling layer as being

governed by a convective diffusion equation [11], subsequently likened to a fluid layer

interacting with the solid bulk [12]. This seems to be more in line with the experiments,

for instance in predicting hysteresis in the variation of the angle of repose.

The first round of experiments all involved roughly spherical particles that could

easily roll under their own weight once activated. Recently, similar experiments have

been performed using highly anisotropic particles instead, namely grains of rice [13]. For

rounder grains the avalanche spectrum was again found to be stretched exponential, but

for grains with a large aspect ratio a very different picture emerged. These grains did not

often roll but tended to slide along the surface in coherent domains, hereafter referred

to as clusters [24]—[16]. The corresponding avalanche spectrum was power law. This

rekindled hopes that some granular systems might after all be SOC, and a number of

modified sandpile models have now been devised [17]—[22]. However, these “ricepile”

models lack a clear physical interpretation and fail to exhibit stretched exponential

behaviour over any part of their parameter space. Furthermore, none of them have

the same exponent for the avalanche spectrum as those obtained from the experiments.

This has led to speculation about whether the power law really is a consequence of SOC

behaviour [23].

In this paper, we present a picture for granular avalanching which closely follows the

qualitative descriptions of surface transport made during the ricepile experiments [13].

A simple model is devised which describes the transport process on the level of clusters.

Numerical simulations show that the avalanche spectrum is stretched exponential for

a broad parameter range, but crosses over to a power law regime when the surface

transport is principally in the form of clusters. The recovery of SOC behaviour is hence

attributed to the overdamped motion of clusters as opposed to the inertial motion of

individual grains.
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2. A simple model for the dual transport mechanism

We now proceed to derive a model which incorprates both individual particle and

clustered motion. Although clearly very simplified, this may be regarded as the minimal

model for dual surface flow.

Only the clusters themselves will be explicitly represented; independent grains are

assumed to form a rolling layer that will be implicitly incorporated into the rules of

the model. To approximate the discrete nature of clusters, a lattice repesentation is

adopted in which the width of the pile is given by the integer variable i, 1 ≤ i ≤ L. The

boundary at i = 1 is closed and clusters can only exit the system via the open boundary

at i = L. On each site i are stacked Ni clusters of varying height dhij , 1 ≤ j ≤ Ni , so

the total height is

hi =
Ni∑

j=1

dhij (1)

and the local slope is zi = hi − hi+1 (it is customary in sandpile models to use positive

slopes even though the height is decreasing in the direction of increasing i). This discrete

representation is similar to that adopted by other sandpile models, except that here the

blocks represent whole clusters rather than just single particles.

New clusters can emerge in regions over the surface where the rate of conversion

from rolling to static particles is non-zero. Anisotropic particles quickly lose their kinetic

energy via uneven rolling etc. and consequently the rolling layer is limited to the vicinity

of the closed boundary. In this case new clusters only arise near to i = 1, as schematised

in Fig. 1. By contrast particles that easily roll, such as the rounder grains of rice used

in the experiments, gives rise to a rolling layer extends deep into the system, so clusters

may emerge anywhere over the pile’s surface. Note that clusters may emerge on sites

i > 1 even though the individual particles are only added next to the closed boundary.

Clusters on the surface may move under perturbations from the rolling layer or the

motion of adjacent clusters. To model this, a cluster at site i whose local slope zi exceeds

some threshold value (zc)i becomes active and begins to move. Following Christensen

et al., (zc)i is taken to be a site-dependent random variable that changes value after

each sliding event [20]—[22]. This annealed disorder represents the disordered packing

of granular media. In the model specified below we also incorporate a number of other

forms of disorder, such as the size of clusters and the number of clusters that move

at once. Although the critical exponents vary for small systems, we were unable to

simulate large systems and so it is possible that all of these models belong to the same

universality class of one dimensional sandpile models with annealed disorder [17]—[22].

A moving cluster is large compared to the individual particles that activated it, so

its velocity will be low and hence its motion will be overdamped. This means it will only

move one site before coming to rest. However, in our model there is a fixed probability

pdiss per sliding event that the cluster disintegrates into its constituent particles and

disperses into the rolling layer, which on this level of description is equivalent to
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Figure 1. A schematic representation of the influx and movement of clusters. New

clusters can only form on the surface in regions where the rolling layer (here denoted by

the diagonally shaded area) is non–vanishing. An existing cluster begins sliding once

the local slope exceeds some given threshold value. For instance, if the cross–hatched

cluster in the diagram becomes activated, it either dissipates into the rolling layer with

probability pdiss or moves one site to the right with probability 1 − pdiss.

dissipation. For incompressible particles pdiss = 1, which may relate to the fragility of

structures formed by such materials [25]. Conversely, pdiss < 1 for deformable materials,

decreasing still further for elongated or jagged grains as a consequence of their increased

contact surface area. Note that the dissipation of clusters into the rolling layer does not

imply loss of mass conservation.

In summary, the model is specified as follows. Each site i is assigned a critical slope

variable (zc)i . For every time step, the following procedure is performed.

(i) Driving: A site i is selected and a cluster of height dhij is added to the top of it.

(ii) Check for stability: Any site k whose local slope zk > (zc)k is marked for toppling.

(iii) Toppling: All of the unstable sites marked in step (ii) are toppled in parallel. For

each k, the topmost n clusters are selected and moved to site k+1, or are removed from

the system with probability pdiss .

(iv) Annealed zc: Every site that toppled is assigned a new critical slope zc .

(iv) Avalanche: Steps (ii)–(iv) are repeated until every site in the system is stable, then

another cluster is added as per step (i).

The distributions for the random variables dhij , zc, n and the site i where the clusters

are added need to be specified in some manner that relates to the type of grain involved.

This will be described in the following section.
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3. Comparison with experimental data

It will now be demonstrated that this model exhibits the same crossover in behaviour

as in the ricepile experiments. The parameter pdiss and the range of cluster addition

depend upon the properties of the type of grain in question, in a manner to be described

below. The other parameters used in the simulations were the same for both cases. The

cluster heights dhij were drawn from the uniform distribution [a, b]. The threshold

slopes zc were uniformly distributed in [2, 3], although other ranges were also considered

with no qualitative change in behaviour observed. When a site becomes unstable the

topmost n clusters are activated and start to move, where n is either fixed at 1 or

randomly selected from {1, 2}. No significant changes in behaviour were observed for

all reasonable parameter ranges, although deviations did occur in some extreme cases,

for instance when b ≫ a or a → 0.

To simulate a system comprising of the rounder grains that gave rise to a broad

rolling layer but did not form stable clusters, new clusters are added to the surface

uniformly over the range 1 ≤ i ≤ L, and pdiss ∈ (0.1, 0.6). A new cluster is not added

until all of the sites in the system are stable. Numerical simulations measuring P (E, L),

the distribution of the potential energy E lost by the pile as the result of a single addition,

shows good data collapse after the finite–size rescaling P (E, L) = L−1f(E/L), in accord

with the experimental data. The scaling function f(x) is a stretched exponential,

f(x) = A exp{−(x/x0)
γ} (2)

with 0 < γ < 1, where γ and x0 depend upon the parameters. By varying pdiss we found

it easy to obtain values close to those measured in the early experiments and the ricepile

experiments [7, 13], as illustrated in Fig. 2.

The elongated grains of rice formed stable clusters that passed intact through

the system, but the penetration of the rolling layer was limited. This translates into

pdiss = 0 and new clusters only being added to sites i in a range such as 1 ≤ i ≤ L/10 or

1 ≤ i ≤ L/20. P (E, L) obeys the same finite size scaling relation as before, but f(x) is

now flatter for small x and power law for large x, f(x) ∼ x−α, as in Fig. 3. The exponent

α depends upon the choice of parameters and the system size, typically taking values in

the range 1.1 to 1.6. We were unable to obtain an exponent close to the experimental

value, which was “just greater than 2” [13]. This might be due to some crucial dynamical

effect which has been overlooked, although it may just be an artefact of the reduced

dimensionality of the model. Since α < 2 a finite–size cut–off is necessary and large

systems are needed for a definite power law region to appear. However, measurements

of the number of clusters that moved during each avalanche, rather than the change in

potential energy, shows a clearer power law (with the same exponent α) for all system

sizes. Coupled with the similarity to many sandpile models, this implies that the model

is SOC in this region of parameter space.

Christensen et al. performed a further set of experiments to measure the time taken

for tracer particles (coloured grains of rice) to pass through the system [20]. Only the
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Figure 2. Finite–size scaling plot of P (E, L) for system sizes L = 100, 250, 500 and

1000. New clusters were added uniformly over the entire system and pdiss = 0.4. If

f(x) = A exp{−(x/x0)
γ} then − ln f(x) = − lnA + (x/x0)

γ , which will give a straight

line on a log–log plot when x is large and the corrections due to lnA can be ignored.

For the plots shown above, γ ≈ 0.43 and x0 ≈ 0.4, in agreement with the values from

the ricepile experiments, γ = 0.43 ± 0.03 and x0 = 0.45 ± 0.09. The other parameters

were zc ∈ [2, 3], n ∈ {1, 2}, and dhij ∈ [0.5, 1.5]. Units were chosen such that mg = 1.
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Figure 3. Finite–size scaling plot of P (E, L) for four different system sizes, L = 500

(dotted line), L = 1000 (dashed-dotted line), L = 1500 (dashed line) and L = 2000

(solid line). New clusters were added uniformly over the range 1 ≤ i ≤ L/20 and

pdiss = 0. The straight line has a slope of approximately 1.30 ± 0.05. The other

parameters were zc ∈ [2, 3], n ∈ {1, 2} and dhij ∈ [0.8, 1.2].
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Figure 4. The distribution of transit times for clusters to move through the system,

for the same parameter values as those given in Fig. 2 (solid line) and Fig. 3 (dashed

line). The straight line has a slope of 2.3 ± 0.1. The system size was L = 250 in both

cases.

elongated grains that gave the power law in the first set of experiments were used. They

found that the distribution of transit times P (t) was roughly constant for small t but

crossed over to a power law for large t, P (t) ∼ t−β with β = 2.4 ± 0.2. Simulations of

our model show the same behaviour with a similar exponent for both cases studied, as

demonstrated in Fig. 4. Thus we conclude that this power law is not symbolic of a

critical state and predict that the same exponent would be recovered if the experiments

were repeated using the rounder grains.

4. Summary

In summary, we have argued that the crossover in behaviour observed in the ricepile

experiments can be attributed to a change in the dominant mode of transport, from

the inertial motion of the rounder grains to the overdamped motion of clusters of the

elongated grains. A simple model was introduced in which blocks represent coherent

clusters of particles. Not only does this explain why inertial effects may be ignored, since

clusters naturally move in an overdamped fashion, but also allows for the dissipation of

blocks in a physically plausible manner. This may be a important mechanism for the

emergence of the stretched exponential behaviour.

If this hypothesis is correct, then power law avalanching should also be observed

for any material in which surface flow is dominated by clustered motion. It would be

interesting to see if this prediction might be verified experimentally. We have recently

become aware of experiments on watered soil ridges where regions of the surface moved

as whole regions [26]. Power law behaviour was observed, which would appear to be in
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accord with our hypothesis.
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