11 research outputs found

    Draft genome sequence of root-associated sugarcane growth-promoting microbispora sp. strain GKU 823

    Get PDF
    The endophytic plant growth-promoting Microbispora sp. strain GKU 823 was isolated from the roots of sugarcane cultivated in Thailand. It has an estimated 9.4-Mbp genome and a G+C content of 71.3%. The genome sequence reveals several genes associated with plant growth-promoting traits and extensive specialized metabolite biosynthesis

    Draft genome sequence of root-associated sugarcane growth promoting Microbispora sp. GKU 823

    Get PDF
    The endophytic plant growth promoting Microbispora sp. GKU 823 was isolated from the roots of sugarcane cultivated in Thailand. It has an estimated 9.4 Mbp genome and a G+C content of 71.3%. The genome sequence reveals several genes associated with plant growth-promoting traits and extensive secondary metabolite biosyntheses

    Draft genome sequence of plant growth-promoting endophytic Streptomyces sp. GKU 895 isolated from the roots of sugarcane

    Get PDF
    Streptomyces sp. GKU 895 is an endophytic actinomycete isolated from the roots of sugarcane. GKU 895 has a genome of 8.3 Mbp and the genome exhibits adaptations related to plant growth-promoting activity. It also has extensive specialized metabolite biosynthetic gene clusters apparent in its genome

    Integrating perspectives in actinomycete research: an ActinoBase review of 2020-21

    Get PDF
    Last year ActinoBase, a Wiki-style initiative supported by the UK Microbiology Society, published a review highlighting the research of particular interest to the actinomycete community. Here, we present the second ActinoBase review showcasing selected reports published in 2020 and early 2021, integrating perspectives in the actinomycete field. Actinomycetes are well-known for their unsurpassed ability to produce specialised metabolites, of which many are used as therapeutic agents with antibacterial, antifungal, or immunosuppressive activities. Much research is carried out to understand the purpose of these metabolites in the environment, either within communities or in host interactions. Moreover, many efforts have been placed in developing computational tools to handle big data, simplify experimental design, and find new biosynthetic gene cluster prioritisation strategies. Alongside, synthetic biology has provided advances in tools to elucidate the biosynthesis of these metabolites. Additionally, there are still mysteries to be uncovered in understanding the fundamentals of filamentous actinomycetes' developmental cycle and regulation of their metabolism. This review focuses on research using integrative methodologies and approaches to understand the bigger picture of actinomycete biology, covering four research areas: i) technology and methodology; ii) specialised metabolites; iii) development and regulation; and iv) ecology and host interactions

    Transcriptome landscapes of salt-susceptible rice cultivar IR29 associated with a plant growth promoting endophytic streptomyces

    Get PDF
    Plant growth-promoting endophytic (PGPE) actinomycetes have been known to enhance plant growth and mitigate plant from abiotic stresses via their PGP-traits. In this study, PGPE Streptomyces sp. GKU 895 promoted growth and alleviated salt tolerance of salt-susceptible rice cultivar IR29 by augmentation of plant weight and declined ROS after irrigation with 150 mM NaCl in a pot experiment. Transcriptome analysis of IR29 exposed to the combination of strain GKU 895 and salinity demonstrated up and downregulated differentially expressed genes (DEGs) classified by gene ontology and plant reactome. Streptomyces sp. GKU 895 induced changes in expression of rice genes including transcription factors under salt treatment which involved in growth and development, photosynthesis, plant hormones, ROS scavenging, ion transport and homeostasis, and plant–microbe interactions regarding pathogenesis- and symbiosis-related proteins. Taken together, these data demonstrate that PGPE Streptomyces sp. GKU 895 colonized and enhanced growth of rice IR29 and triggered salt tolerance phenotype. Our findings suggest that utilisation of beneficial endophytes in the saline fields could allow for the use of such marginal soils for growing rice and possibly other crops

    Full-Length 16S rRNA Gene Amplicon and Metagenome Taxonomic Profiling of Beneficial Microbes in Poultry and Swine Probiotic Product

    No full text
    Analysis of feed supplements can highlight microbial diversity and the prevalence of antimicrobial resistance (AMR), allowing users to monitor the safety of their animals. The 16S amplicon and metagenomic data generated by nanopore sequencing revealed that Bacillus was the dominant prokaryote, and AMR genes were detected in the animal probiotic products

    ActinoBase : tools and protocols for researchers working on Streptomyces and other filamentous actinobacteria

    Get PDF
    Actinobacteria is an ancient phylum of Gram-positive bacteria with a characteristic high GC content to their DNA. The ActinoBase Wiki is focused on the filamentous actinobacteria, such as Streptomyces species, and the techniques and growth conditions used to study them. These organisms are studied because of their complex developmental life cycles and diverse specialised metabolism which produces many of the antibiotics currently used in the clinic. ActinoBase is a community effort that provides valuable and freely accessible resources, including protocols and practical information about filamentous actinobacteria. It is aimed at enabling knowledge exchange between members of the international research community working with these fascinating bacteria. Actin-oBase is an anchor platform that underpins worldwide efforts to understand the ecology, biology and metabolic potential of these organisms. There are two key differences that set ActinoBase apart from other Wiki-based platforms: [1] ActinoBase is specifically aimed at researchers working on filamentous actinobacteria and is tailored to help users overcome challenges working with these bacteria and [2] it provides a freely accessible resource with global networking opportunities for researchers with a broad range of experience in this field
    corecore