115 research outputs found

    Roadmap to personalized medicine

    Get PDF
    Abstract Standard clinical protocols and the concept ā€œone drug fits allā€ that are currently used to treat illness in many cases are not effective, and strikingly so in the treatment of cancer, where 75% of therapeutic schemes are ineffective. The concept of personalized medicine is that the treatment of the disease is designed on the basis of the individual needs of each patient and the factors that influence their response to different drugs. Individualization of patient care has the potential to generate novel effective therapies, limit the adverse drug effects, create optimal treatments for individual patients, and decrease the cost associated with chronic illness and complications of drug usage. However, to achieve the goals of personalized medicine many challenges must be addressed. Here we discuss possible ways to increase the consistency of data generated by basic research and their suitability for application in medicine. New technologies employing systems biology and computer based approaches will facilitate overcoming many of the scientific challenges in the field. Changes in the education of researchers, health professionals, and the public are also required to successfully implement personalized medicine as a routine in the clinic. Finally, shift of the focus away from the development of blockbuster drugs in the biopharmaceutical industry, and modifications in the legal system to accommodate novel advancements need to be considered. The joint effort of all interested parties is needed to generate an efficient roadmap that will take us rapidly and safely to effective individual treatment, which will eliminate diseases and create better health care for all

    Acute or chronic stress induce cell compartment-specific phosphorylation of glucocorticoid receptor and alter its transcriptional activity in Wistar rat brain

    Get PDF
    Chronic stress and impaired glucocorticoid receptor (GR) feedback are important factors for the compromised hypothalamicā€“pituitaryā€“adrenal (HPA) axis activity. We investigated the effects of chronic 21 day isolation of Wistar rats on the extrinsic negative feedback part of HPA axis: hippocampus (HIPPO) and prefrontal cortex (PFC). In addition to serum corticosterone (CORT), we followed GR subcellular localization, GR phosphorylation at serine 232 and serine 246, expression of GR regulated genes: GR, CRF and brain-derived neurotropic factor (BDNF), and activity of c-Jun N-terminal kinase (JNK) and Cdk5 kinases that phosphorylate GR. These parameters were also determined in animals subjected to acute 30ā€Šmin immobilization, which was taken as ā€˜normalā€™ adaptive response to stress. In isolated animals, we found decreased CORT, whereas in animals exposed to acute immobilization, CORT was markedly increased. Even though the GR was predominantly localized in the nucleus of HIPPO and PFC in acute, but not in chronic stress, the expression of GR, CRF, and BDNF genes was similarly regulated under both acute and chronic stresses. Thus, the transcriptional activity of GR under chronic isolation did not seem to be exclusively dependent on high serum CORT levels nor on the subcellular location of the GR protein. Rather, it resulted from the increased Cdk5 activation and phosphorylation of the nuclear GR at serine 232 and the decreased JNK activity reflected in decreased phosphorylation of the nuclear GR at serine 246. Our study suggests that this nuclear isoform of hippocampal and cortical GR may be related to hypocorticism i.e. HPA axis hypoactivity under chronic isolation stress

    Immunotherapy advances for mesothelioma treatment.

    Get PDF
    INTRODUCTION Mesothelioma is a rare type of cancer that is strongly tied to asbestos exposure. Despite application of different modalities such as chemotherapy, radiotherapy and surgery, patient prognosis remains very poor and therapies are ineffective. Much research currently focuses on the application of novel approaches such as immunotherapy towards this disease. Areas covered: The types, stages and aetiology of mesothelioma are detailed, followed by a discussion of the current treatment options such as radiotherapy, surgery, and chemotherapy. A description of innate and adaptive immunity and the principles and justification of immunotherapy is also included. Clinical trials for different immunotherapeutic modalities are described, and lastly the article closes with an expert commentary and five-year view, the former of which is summarised below. Expert commentary: Current efforts for novel mesothelioma therapies have been limited by attempting to apply treatments from other cancers, an approach which is not based on a solid understanding of mesothelioma biology. In our view, the influence of the hostile, hypoxic microenvironment and the gene expression and metabolic changes that resultantly occur should be characterised to improve therapies. Lastly, clinical trials should focus on overall survival rather than surrogate endpoints to avoid bias and inaccurate reflections of treatment effects

    Promising investigational drug candidates in phase I and phase II clinical trials for mesothelioma

    Get PDF
    Introduction: Malignant mesothelioma is a rare and lethal malignancy primarily affecting the pleura and peritoneum. Mesothelioma incidence is expected to increase worldwide and current treatments remain ineffective, leading to poor prognosis. Within this article potential targets to improve the quality of life of the patients and assessment of further avenues for research are discussed. Areas covered: This review highlights emerging therapies currently under investigation for malignant mesothelioma with a specific focus on phase I and phase II clinical trials. Three main areas are discussed: immunotherapy (immune checkpoint blockade and cancer vaccines, among others), multitargeted therapy (such as targeting pro-angiogenic genes) and gene therapy (such as suicide gene therapy). For each, clinical trials are described to detail the current or past investigations at phase I and II. Expert opinion: The approach of applying existing treatments from other cancers does not show significant benefit, with the most promising outcome being an increase in survival of 2.7 months following combination of chemotherapy with bevacizumab. It is our opinion that the hypoxic microenvironment, the role of the stroma, and the metabolic status of mesothelioma should all be assessed and characterised to aid in the development of new treatments to improve patient outcomes

    The role of glucocorticoid receptor phosphorylation in Mcl-1 and NOXA gene expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cyclin-dependent kinase (CDK) and mitogen-activated protein kinase (MAPK) mediated phosphorylation of glucocorticoid receptor (GR) exerts opposite effects on GR transcriptional activity and affects other posttranslational modifications within this protein. The major phosphorylation site of human GR targeted by MAPK family is the serine 226 and multiple kinase complexes phosphorylate receptor at the serine 211 residue. We hypothesize that GR posttranslational modifications are involved in the determination of the cellular fate in human lymphoblastic leukemia cells. We investigated whether UV signalling through alternative GR phosphorylation determined the cell type specificity of glucocorticoids (GCs) mediated apoptosis.</p> <p>Results</p> <p>We have identified putative Glucocorticoid Response Elements (GREs) within the promoter regulatory regions of the Bcl-2 family members NOXA and Mcl-1 indicating that they are direct GR transcriptional targets. These genes were differentially regulated in CEM-C7-14, CEM-C1-15 and A549 cells by glucocorticoids and JNK pathway. In addition, our results revealed that the S211 phosphorylation was dominant in CEM-C7-14, whereas the opposite was the case in CEM-C1-15 where prevalence of S226 GR phosphorylation was observed. Furthermore, multiple GR isoforms with cell line specific patterns were identified in CEM-C7-14 cells compared to CEM-C1-15 and A549 cell lines with the same antibodies.</p> <p>Conclusions</p> <p>GR phosphorylation status kinetics, and site specificity as well as isoform variability differ in CEM-C7-14, CEM-C1-15, and A549 cells. The positive or negative response to GCs induced apoptosis in these cell lines is a consequence of the variable equilibrium of NOXA and Mcl-1 gene expression potentially mediated by alternatively phosphorylated GR, as well as the balance of MAPK/CDK pathways controlling GR phosphorylation pattern. Our results provide molecular base and valuable knowledge for improving the GC based therapies of leukaemia.</p

    Western blot analysis of glucocorticoid receptor phosphoisoforms by one- and two-dimensional electrophoretic assays

    Get PDF
    The glucocorticoid receptor (GR) protein is a cytosolic ligand-dependent transcription factor with numerous functions regulated by post-translational modifications, including phosphorylation/dephosphorylation. Among the functions most extensively affected by GR phosphorylation are the modulation of its transcriptional activity, alterations in its interaction pattern with cofactors, nuclear translocation and selective gene transactivation. Intensive analysis of the intracellular distribution of GR phosphoisoforms and their interaction with proteins of other cellular signalling networks required the use of [gamma-(32)P]ATP as a phosphate donor, and special laboratory protection measures to avoid external irradiation and contamination. In the present study, simple and easy-to-use non-radioactive protein mobility shift assays (NMS assays) were developed using one- and/or two-dimensional gel electrophoresis based on differences in the pI and molecular mass of GR phosphoisoforms. The GR isoforms were immunodetected with specific monoclonal or polyclonal anti-GR antibodies by Western blot in three diverse systems, namely yeast BJ2168 cells expressing wild-type rat GR, rat hepatoma GRH2 cells grown in culture and brain tissue from Wistar rat experimental animals. The results obtained using the NMS assay were similar to previous results obtained with the [gamma-(32)P] ATP standard assay

    Stress-Induced Phosphorylation of C-Jun-N-Terminal Kinases and Nuclear Translocation of Hsp70 in the Wistar Rat Hippocampus

    Get PDF
    Glucocorticoids are key regulators of the neuroendocrine stress response in the hippocampus. Their action is partly mediated through the subfamily of MAPKs termed c-jun-N-terminal kinases (JNKs), whose activation correlates with neurodegeneration. The stress response also involves activation of cell protective mechanisms through various heat shock proteins (HSPs) that mediate neuroprotection. We followed both JNKs and Hsp70 signals in the cytoplasmic and nuclear compartments of the hippocampus of Wistar male rats exposed to acute, chronic, and combined stress. The activity of JNK1 was decreased in both compartments by all three types of stress, while the activity of cytoplasmic JNK2/3 was elevated in acute and unaltered or lowered in chronic and combined stress. Under all stress conditions, Hsp70 translocation to the nucleus was markedly increased. The results suggest that neurodegenerative signaling of JNKs may be counteracted by increase of nuclear Hsp70, especially under chronic stress

    What can independent research for mesothelioma achieve to treat this orphan disease?

    Get PDF
    Introduction: Malignant pleural mesothelioma (MPM) is a rare neoplasm with a poor prognosis, as current therapies are ineffective. Despite the increased understanding of the molecular biology of mesothelioma, there is still a lack of drugs that dramatically enhance patient survival. Area Covered: This review discusses recent and complete clinical trials supported by the NIH, other U.S. Federal agencies, universities and organizations found on clinicaltrials.gov. Firstly, chemotherapy-based trials are described, followed by immunotherapy and multitargeted therapy. Then we introduce drug repositioning and the use of drug docking as tools to find new interesting molecules. Finally, we highlight potential molecular pathways that may play a role in mesothelioma biology and therapy. Expert Opinion: Numerous biases are present in the clinical trials due to a restricted number of cases, inappropriate endpoints and inaccurate stratification of patients which delay the finding of a treatment for MPM. The most crucial issue of independent research for MPM is the lack of more substantive funding to translate these findings to the clinical setting. However, this approach is not necessarily scientific given the low mutational load of mesothelioma relative to other cancers, and therefore patients need a more solid rationale to have a good chance of successful treatmen

    Intratumor microbiota as a novel potential prognostic indicator in mesothelioma

    Get PDF
    Introduction: Despite increased attention on immunotherapy, primarily immune checkpoint blockade, as a therapeutic approach for mesothelioma (MMe), its efficacy and tolerability remain questioned. One potential explanation for different responses to immunotherapy is the gut and intratumor microbiota; however, these remain an underexplored facet of MMe. This article highlights the cancer intratumor microbiota as a novel potential prognostic indicator in MMe. Methods: TCGA data on 86 MMe patients from cBioPortal underwent bespoke analysis. Median overall survival was used to divide patients into ā€œLow Survivorsā€ and ā€œHigh Survivorsā€. Comparison of these groups generated Kaplan-Meier survival analysis, differentially expressed genes (DEGs), and identification of differentially abundant microbiome signatures. Decontamination analysis refined the list of signatures, which were validated as an independent prognostic indicator through multiple linear regression modelling and Cox proportional hazards modelling. Finally, functional annotation analysis on the list of DEGs was performed to link the data together. Results: 107 genera signatures were significantly associated with patient survival (positively or negatively), whilst clinical characteristic comparison between the two groups demonstrated that epithelioid histology was more common in ā€œHigh Survivorsā€ versus biphasic in ā€œLow Survivorsā€. Of the 107 genera, 27 had published articles related to cancer, whilst only one (Klebsiella) had MMe-related published articles. Functional annotation analysis of the DEGs between the two groups highlighted fatty acid metabolism as the most enriched term in ā€œHigh Survivorsā€, whilst for ā€œLow Survivorsā€ the enriched terms primarily related to cell cycle/division. Linking these ideas and findings together is that the microbiome influences, and is influenced by, lipid metabolism. Finally, to validate the independent prognostic value of the microbiome, multiple linear regression modelling as well as Cox proportional hazards modelling were employed, with both approaches demonstrating that the microbiome was a better prognostic indicator than patient age or stage of the cancer. Discussion: The findings presented herein, alongside the very limited literature from scoping searches to validate the genera, highlight the microbiome and microbiota as a potentially rich source of fundamental analysis and prognostic value. Further in vitro studies are needed to elucidate the molecular mechanisms and functional links that may lead to altered survival
    • ā€¦
    corecore