127 research outputs found
Generalised Einstein Relation for Hot Brownian Motion
The Brownian motion of a hot nanoparticle is described by an effective Markov
theory based on fluctuating hydrodynamics. Its predictions are scrutinized over
a wide temperature range using large-scale molecular dynamics simulations of a
hot nanoparticle in a Lennard-Jones fluid. The particle positions and momenta
are found to be Boltzmann distributed according to distinct effective
temperatures and . For we
derive a formally exact theoretical prediction and establish a generalised
Einstein relation that links it to directly measurable quantities
Microrheology probes length scale dependent rheology
We exploit the power of microrheology to measure the viscoelasticity of entangled F-actin solutions at different length scales from 1 to 100 mu m over a wide frequency range. We compare the behavior of single probe-particle motion to that of the correlated motion of two particles. By varying the average length of the filaments, we identify fluctuations that dissipate diffusively over the filament length. These provide an important relaxation mechanism of the elasticity between 0.1 and 30 rad/sec
The Glassy Wormlike Chain
We introduce a new model for the dynamics of a wormlike chain in an
environment that gives rise to a rough free energy landscape, which we baptise
the glassy wormlike chain. It is obtained from the common wormlike chain by an
exponential stretching of the relaxation spectrum of its long-wavelength
eigenmodes, controlled by a single stretching parameter. Predictions for
pertinent observables such as the dynamic structure factor and the
microrheological susceptibility exhibit the characteristics of soft glassy
rheology and compare favourably with experimental data for reconstituted
cytoskeletal networks and live cells. We speculate about the possible
microscopic origin of the stretching, implications for the nonlinear rheology,
and the potential physiological significance of our results.Comment: 12 pages, 8 figures. Minor correction
Overdamped Stress Relaxation in Buckled Rods
We present a comprehensive theoretical analysis of the stress relaxation in a
multiply but weakly buckled incompressible rod in a viscous solvent. In the
bulk two interesting regimes of generic self--similar intermediate asymptotics
are distinguished, which give rise to two classes of approximate and exact
power--law solutions, respectively. For the case of open boundary conditions
the corresponding non--trivial boundary--layer scenarios are derived by a
multiple--scale perturbation (``adiabatic'') method. Our results compare well
with -- and provide the theoretical explanation for -- previous results from
numerical simulations, and they suggest new directions for further fruitful
numerical and experimental investigations.Comment: 20 pages, 12 figure
Hot Brownian Motion
We derive the generalized Markovian description for the non-equilibrium
Brownian motion of a heated particle in a simple solvent with a
temperature-dependent viscosity. Our analytical results for the generalized
fluctuation-dissipation and Stokes-Einstein relations compare favorably with
measurements of laser-heated gold nano-particles and provide a practical
rational basis for emerging photothermal technologies.Comment: 10 pages, 5 figure
On the shape of barchan dunes
Barchans are crescent-shaped sand dunes forming in aride regions with
unidirectional wind and limited sand supply. We report analytical and numerical
results for dune shapes under different environmental conditions as obtained
from the so-called `minimal model' of aeolian sand dunes. The profiles of
longitudinal vertical slices (i.e. along the wind direction) are analyzed as a
function of wind speed and sand supply. Shape transitions can be induced by
changes of mass, wind speed and sand supply. Within a minimal extension of the
model to the transverse direction the scale-invariant profile of transverse
vertical cuts can be derived analytically.Comment: to appear in J. Phys.: Condens. Matter 17 (2005
Tube Width Fluctuations in F-Actin Solutions
We determine the statistics of the local tube width in F-actin solutions,
beyond the usually reported mean value. Our experimental observations are
explained by a segment fluid theory based on the binary collision approximation
(BCA). In this systematic generalization of the standard mean-field approach
effective polymer segments interact via a potential representing the
topological constraints. The analytically predicted universal tube width
distribution with a stretched tail is in good agreement with the data.Comment: Final version, 5 pages, 4 figure
Monomer dynamics of a wormlike chain
We derive the stochastic equations of motion for a tracer that is tightly
attached to a semiflexible polymer and confined or agitated by an externally
controlled potential. The generalised Langevin equation, the power spectrum,
and the mean-square displacement for the tracer dynamics are explicitly
constructed from the microscopic equations of motion for a weakly bending
wormlike chain by a systematic coarse-graining procedure. Our accurate
analytical expressions should provide a convenient starting point for further
theoretical developments and for the analysis of various single-molecule
experiments and of protein shape fluctuations.Comment: 6 pages, 4 figure
Particle dynamics of a cartoon dune
The spatio-temporal evolution of a downsized model for a desert dune is
observed experimentally in a narrow water flow channel. A particle tracking
method reveals that the migration speed of the model dune is one order of
magnitude smaller than that of individual grains. In particular, the erosion
rate consists of comparable contributions from creeping (low energy) and
saltating (high energy) particles. The saltation flow rate is slightly larger,
whereas the number of saltating particles is one order of magnitude lower than
that of the creeping ones. The velocity field of the saltating particles is
comparable to the velocity field of the driving fluid. It can be observed that
the spatial profile of the shear stress reaches its maximum value upstream of
the crest, while its minimum lies at the downstream foot of the dune. The
particle tracking method reveals that the deposition of entrained particles
occurs primarily in the region between these two extrema of the shear stress.
Moreover, it is demonstrated that the initial triangular heap evolves to a
steady state with constant mass, shape, velocity, and packing fraction after
one turnover time has elapsed. Within that time the mean distance between
particles initially in contact reaches a value of approximately one quarter of
the dune basis length
- …