36 research outputs found

    Active Detectors for Plasma Soft X-Ray Detection at PALS

    Get PDF
    This paper summarizes the work carried out for an experimental study of low-energy nuclear excitation by laser-produced plasma at the PALS Prague laser facility. We describe the adaptation and shielding of single-quantum active radiation detectors developed at IEAP CTU Prague to facilitate their operation inside the laser interaction chamber in the vicinity of the plasma target. The goal of this effort is direct real-time single-quantum detection of plasma soft X-ray radiation with energy above a few keV and subsequent identification of the decay of the excited nuclear states via low-energy gamma rays in a highly radiative environment with strong electromagnetic interference

    Experimental studies of generation of ~100 MeV Au-ions from the laser-produced plasma

    Get PDF
    AbstractUsing the PALS iodine laser system, Au ions with the charge state up to 58+ and with the kinetic energy as high as ~300 MeV were generated. The production of these ions was tested in dependence on the laser frequency (1ω, 3ω), on the irradiation/detection angles (0°, 30°), on the focus position with regard to the target surface, and on the target thickness (500 µm, 200 µm, 80 µm). A larger amount of the fastest ions was produced with 1ω than with 3ω, the most of the fast ions were recorded in the direction ~10°from the target normal, the optimum focus position is in front of the target and should be set on with a precision of 50 µm. The forward emission is weaker than the backward one for both of the thinner targets (which burn through) at our experimental conditions

    Semiconductor Detectors for Observation of Multi-MeV Protons and Ions Produced by Lasers

    Get PDF
    The application of time-of-flight Faraday cups and SiC detectors for the measurement of currents of fast ions emitted by laser-produced plasmas is reported. Presented analysis of signals of ion detectors reflects the design and construction of the detector used. A similarity relation between output signals of ion collectors and semiconductor detectors is established. Optimization of the diagnostic system is discussed with respect to the emission time of electromagnetic pulses interfering with signals induced by the fastest ions accelerated up to velocities of 107 m/s. The experimental campaign on laser-driven ion acceleration was performed at the PALS facility in Prague

    Factors influencing parameters of laser ion sources

    Get PDF
    Various applications demand various kinds of ions. Charge state, energy and the amount of laser produced ions depend, primary, on the wavelength, the energy, the pulse duration, and the focusing ability of the laser used. Angle of the target irradiation, angle of the ion extraction (recording), and mainly the focus setting may significantly influence especially the portion of ions with the highest charge states. The participation of non-linear processes on the generation of ions with extremely high parameters is demonstrated. The observed effects support the idea of a longitudinal structure of the self-focused laser beam with a space period of ∼200 µm

    Self-focusing in processes of laser generation of highly-charged and high-energy heavy ions

    Get PDF
    Laser-beam interaction with expanding plasma was investigated using the PALS high-power iodine-laser system. The interaction conditions are significantly changing with the laser focus spot position. The decisive role of the laser-beam self-focusing, participating in the production of ions with the highest charge states, was proved

    Angular distributions of ions emitted from laser plasma produced at various irradiation angles and laser intensities

    Get PDF
    AbstractAngular distributions of currents and velocities (energies) of ions produced at various target irradiation angles and laser intensities ranged from 1010 W/cm2 to 1017 W/cm2 were analyzed. It was confirmed that for low laser intensities the ion current distributions are always peaked along the target normal. However, at laser intensities comparable to or higher than 1014 W/cm2, the preferred direction of ion emission strongly depends on the irradiation geometry (laser focus setting, the irradiation angle), and can be off the target normal. This is very likely caused by the non-linear interaction of the laser beam with produced plasma, in particular, by the action of ponderomotive forces and the laser beam self-focusing

    The influence of an intense laser beam interaction with preformed plasma on the characteristics of emitted ion streams

    Get PDF
    AbstractIntense laser-beam interactions with preformed plasma, preceding the laser-target interactions, significantly influence both the ion and X-ray generation. It is due to the laser pulse (its total length, the shape of the front edge, its background, the contrast, the radial homogeneity) as well as plasma (density, temperature) properties. Generation of the super fast (FF) ion groups is connected with a presence of non-linear processes. Saturated maximum of the charge states (independently on the laser intensity) is ascribed to the constant limit radius of the self-focused laser beam. Its longitudinal structure is considered as a possible explanation for the course of some experimental dependencies obtained

    HIDEX: A new high resolution x-ray spectrometer for detailed line profile measurements

    No full text
    We present preliminary obtained with a new spectrometer based on the Johann configuration of cylindrically bent crystals, the HIDEX. The aim of this instrument is to provide detailed line shape and shift measurements of transitions originating from high intensity laser/matter interaction, especially when matter is in extreme conditions of temperature and density. The HIDEX provides two new features. First, its alignment procedure has been improved being now based on an accurate motorized rotation stage that provides a robust and fast way to position the main components in the desired geometrical configuration. Second, there is the option to mount a Charge Coupled Device (CCD) as detector, allowing the instrument to be operated in high repetition rate laser facilities where opening the chamber migh be a critical issue. Here, we report about the test of the prototype at PALS kilo-joule laser facility, Prague, that demonstrated the new alignment procedure concept. First results are discussed
    corecore