4 research outputs found

    Migrating leukocytes are the source of Peroxiredoxin V during inflammation in the airways

    Get PDF
    BACKGROUND: We characterized changes in expression of the antioxidant protein Peroxiredoxin V (PRXV) during airway inflammation. METHODS: Studies in anesthetized rats and mice; PRXV expression determined by Western blot analyses and immunohistochemistry; PRXV m-RNA expression determined by Taq-Man RT-PCR. RESULTS: Bacterial lung inflammation did not change expression of PRXV in murine epithelia but produced massive influx of leukocytes highly expressing PRXV. Endotoxin and f-MLP induced leukocyte migration in rat trachea but did not change mRNA levels and PRXV protein expression in tracheal epithelial cells. In primary airway cell culture (cow), alveolar epithelial cells A549, or co-culture of A549 with murine macrophages RAW264.7, exposure to live bacteria increased expression of PRXV, which required serum. PRXV was secreted in vitro by epithelial and immune cells. CONCLUSION: Inflammation increased expression of PRXV in airways by at least 2 mechanisms: cell population shift by massive influx of leukocytes expressing PRXV, and moderate post-transcriptional up-regulation of PRXV in epithelial cells

    Terahertz-to-infrared converters for imaging the human skin cancer:challenges and feasibility

    No full text
    Abstract Purpose: Terahertz (THz) medical imaging is a promising noninvasive technique for monitoring the skin’s conditions, early detection of the human skin cancer, and recovery from burns and wounds. It can be applied for visualization of the healing process directly through clinical dressings and restorative ointments, minimizing the frequency of dressing changes. The THz imaging technique is cost effective, as compared to the magnetic resonance method. Our aim was to develop an approach capable of providing better image resolution than the commercially available THz imaging cameras. Approach: The terahertz-to-infrared (THz-to-IR) converters can visualize the human skin cancer by converting the latter’s specific contrast patterns recognizable in THz radiation range into IR patterns, detectable by a standard IR imaging camera. At the core of suggested THz-to-IR converters are flat matrices transparent both in the THz range to be visualized and in the operating range of the IR camera, these matrices contain embedded metal nanoparticles (NPs), which, when irradiated with THz rays, convert the energy of THz photons into heat and become nanosources of IR radiation detectable by an IR camera. Results: The ways of creating the simplest converter, as well as a more complex converter with wider capabilities, are considered. The first converter is a gelatin matrix with gold 8.5-nm diameter NPs, and the second is a polystyrene matrix with 2-nm diameter NPs from copper–nickel MONEL® alloy 404. Conclusions: An approach with a THz-to-IR converter equipped with an IR camera is promising in that it could provide a better image of oncological pathology than the commercially available THz imaging cameras do
    corecore