57 research outputs found

    Polyhomogeneous expansions close to null and spatial infinity

    Get PDF
    A study of the linearised gravitational field (spin 2 zero-rest-mass field) on a Minkowski background close to spatial infinity is done. To this purpose, a certain representation of spatial infinity in which it is depicted as a cylinder is used. A first analysis shows that the solutions generically develop a particular type of logarithmic divergence at the sets where spatial infinity touches null infinity. A regularity condition on the initial data can be deduced from the analysis of some transport equations on the cylinder at spatial infinity. It is given in terms of the linearised version of the Cotton tensor and symmetrised higher order derivatives, and it ensures that the solutions of the transport equations extend analytically to the sets where spatial infinity touches null infinity. It is later shown that this regularity condition together with the requirement of some particular degree of tangential smoothness ensures logarithm-free expansions of the time development of the linearised gravitational field close to spatial and null infinities.Comment: 24 pages, 5 figures. To appear in: The Conformal Structure of Spacetimes. Geometry, Analysis, Numerics. J. Frauendiner and H. Friedrich eds. Springe

    On the nonexistence of conformally flat slices in the Kerr and other stationary spacetimes

    Full text link
    It is proved that a stationary solutions to the vacuum Einstein field equations with non-vanishing angular momentum have no Cauchy slice that is maximal, conformally flat, and non-boosted. The proof is based on results coming from a certain type of asymptotic expansions near null and spatial infinity --which also show that the developments of Bowen-York type of data cannot have a development admitting a smooth null infinity--, and from the fact that stationary solutions do admit a smooth null infinity

    Conformal Methods in General Relativity

    Get PDF
    This book offers a systematic exposition of conformal methods and how they can be used to study the global properties of solutions to the equations of Einstein's theory of gravity. It shows that combining these ideas with differential geometry can elucidate the existence and stability of the basic solutions of the theory. Introducing the differential geometric, spinorial and PDE background required to gain a deep understanding of conformal methods, this text provides an accessible account of key results in mathematical relativity over the last thirty years, including the stability of de Sitter and Minkowski spacetimes. For graduate students and researchers, this self-contained account includes useful visual models to help the reader grasp abstract concepts and a list of further reading, making this an ideal reference companion on the topic. This title, first published in 2016, has been reissued as an Open Access publication

    The Conformal Einstein Field Equations with Massless Vlasov Matter

    Get PDF
    We prove the stability of de Sitter space-time as a solution to the Einstein-Vlasov system with massless particles. The semi-global stability of Minkowski space-time is also addressed. The proof relies on conformal techniques, namely Friedrich's conformal Einstein field equations. We exploit the conformal invariance of the massless Vlasov equation on the cotangent bundle and adapt Kato's local existence theorem for symmetric hyperbolic systems to prove a long enough time of existence for solutions of the evolution system implied by the Vlasov equation and the conformal Einstein field equations.Comment: 27 pages. To appear in Ann. Inst. Fourie
    • …
    corecore